These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 29237705)
1. Cilia loss sensitizes cells to transformation by activating the mevalonate pathway. Deng YZ; Cai Z; Shi S; Jiang H; Shang YR; Ma N; Wang JJ; Guan DX; Chen TW; Rong YF; Qian ZY; Zhang EB; Feng D; Zhou QL; Du YN; Liu DP; Huang XX; Liu LM; Chin E; Li DS; Wang XF; Zhang XL; Xie D J Exp Med; 2018 Jan; 215(1):177-195. PubMed ID: 29237705 [TBL] [Abstract][Full Text] [Related]
2. YEATS4 promotes the tumorigenesis of pancreatic cancer by activating beta-catenin/TCF signaling. Jixiang C; Shengchun D; Jianguo Q; Zhengfa M; Xin F; Xuqing W; Jianxin Z; Lei C Oncotarget; 2017 Apr; 8(15):25200-25210. PubMed ID: 28445953 [TBL] [Abstract][Full Text] [Related]
3. HDAC2 promotes loss of primary cilia in pancreatic ductal adenocarcinoma. Kobayashi T; Nakazono K; Tokuda M; Mashima Y; Dynlacht BD; Itoh H EMBO Rep; 2017 Feb; 18(2):334-343. PubMed ID: 28028031 [TBL] [Abstract][Full Text] [Related]
4. KIF11 manipulates SREBP2-dependent mevalonate cross talk to promote tumor progression in pancreatic ductal adenocarcinoma. Gu X; Zhu Q; Tian G; Song W; Wang T; Wang A; Chen X; Qin S Cancer Med; 2022 Sep; 11(17):3282-3295. PubMed ID: 35619540 [TBL] [Abstract][Full Text] [Related]
5. Nicotine promotes initiation and progression of KRAS-induced pancreatic cancer via Gata6-dependent dedifferentiation of acinar cells in mice. Hermann PC; Sancho P; Cañamero M; Martinelli P; Madriles F; Michl P; Gress T; de Pascual R; Gandia L; Guerra C; Barbacid M; Wagner M; Vieira CR; Aicher A; Real FX; Sainz B; Heeschen C Gastroenterology; 2014 Nov; 147(5):1119-33.e4. PubMed ID: 25127677 [TBL] [Abstract][Full Text] [Related]
6. NFATc1 Links EGFR Signaling to Induction of Sox9 Transcription and Acinar-Ductal Transdifferentiation in the Pancreas. Chen NM; Singh G; Koenig A; Liou GY; Storz P; Zhang JS; Regul L; Nagarajan S; Kühnemuth B; Johnsen SA; Hebrok M; Siveke J; Billadeau DD; Ellenrieder V; Hessmann E Gastroenterology; 2015 May; 148(5):1024-1034.e9. PubMed ID: 25623042 [TBL] [Abstract][Full Text] [Related]
7. Overexpression of PD2 leads to increased tumorigenicity and metastasis in pancreatic ductal adenocarcinoma. Vaz AP; Deb S; Rachagani S; Dey P; Muniyan S; Lakshmanan I; Karmakar S; Smith L; Johansson S; Lele S; Ouellette M; Ponnusamy MP; Batra SK Oncotarget; 2016 Jan; 7(3):3317-31. PubMed ID: 26689992 [TBL] [Abstract][Full Text] [Related]
8. Proteomic analysis of pancreatic cancer stem cells: Functional role of fatty acid synthesis and mevalonate pathways. Brandi J; Dando I; Pozza ED; Biondani G; Jenkins R; Elliott V; Park K; Fanelli G; Zolla L; Costello E; Scarpa A; Cecconi D; Palmieri M J Proteomics; 2017 Jan; 150():310-322. PubMed ID: 27746256 [TBL] [Abstract][Full Text] [Related]
9. Origin of pancreatic ductal adenocarcinoma from atypical flat lesions: a comparative study in transgenic mice and human tissues. Aichler M; Seiler C; Tost M; Siveke J; Mazur PK; Da Silva-Buttkus P; Bartsch DK; Langer P; Chiblak S; Dürr A; Höfler H; Klöppel G; Müller-Decker K; Brielmeier M; Esposito I J Pathol; 2012 Apr; 226(5):723-34. PubMed ID: 21984419 [TBL] [Abstract][Full Text] [Related]
10. A human cancer xenograft model utilizing normal pancreatic duct epithelial cells conditionally transformed with defined oncogenes. Inagawa Y; Yamada K; Yugawa T; Ohno S; Hiraoka N; Esaki M; Shibata T; Aoki K; Saya H; Kiyono T Carcinogenesis; 2014 Aug; 35(8):1840-6. PubMed ID: 24858378 [TBL] [Abstract][Full Text] [Related]
11. MicroRNAs of the mir-17~92 cluster regulate multiple aspects of pancreatic tumor development and progression. Quattrochi B; Gulvady A; Driscoll DR; Sano M; Klimstra DS; Turner CE; Lewis BC Oncotarget; 2017 May; 8(22):35902-35918. PubMed ID: 28415794 [TBL] [Abstract][Full Text] [Related]
12. Early requirement of Rac1 in a mouse model of pancreatic cancer. Heid I; Lubeseder-Martellato C; Sipos B; Mazur PK; Lesina M; Schmid RM; Siveke JT Gastroenterology; 2011 Aug; 141(2):719-30, 730.e1-7. PubMed ID: 21684285 [TBL] [Abstract][Full Text] [Related]
13. Loss of Somatostatin Receptor Subtype 2 Promotes Growth of KRAS-Induced Pancreatic Tumors in Mice by Activating PI3K Signaling and Overexpression of CXCL16. Chalabi-Dchar M; Cassant-Sourdy S; Duluc C; Fanjul M; Lulka H; Samain R; Roche C; Breibach F; Delisle MB; Poupot M; Dufresne M; Shimaoka T; Yonehara S; Mathonnet M; Pyronnet S; Bousquet C Gastroenterology; 2015 Jun; 148(7):1452-65. PubMed ID: 25683115 [TBL] [Abstract][Full Text] [Related]
14. Calcium sensing receptor suppresses human pancreatic tumorigenesis through a novel NCX1/Ca(2+)/β-catenin signaling pathway. Tang B; Chow JY; Dong TX; Yang SM; Lu DS; Carethers JM; Dong H Cancer Lett; 2016 Jul; 377(1):44-54. PubMed ID: 27108064 [TBL] [Abstract][Full Text] [Related]
15. Activation of WNT/β-Catenin Signaling Enhances Pancreatic Cancer Development and the Malignant Potential Via Up-regulation of Cyr61. Sano M; Driscoll DR; DeJesus-Monge WE; Quattrochi B; Appleman VA; Ou J; Zhu LJ; Yoshida N; Yamazaki S; Takayama T; Sugitani M; Nemoto N; Klimstra DS; Lewis BC Neoplasia; 2016 Dec; 18(12):785-794. PubMed ID: 27889647 [TBL] [Abstract][Full Text] [Related]
16. Bmi1 combines with oncogenic KRAS to induce malignant transformation of human pancreatic duct cells in vitro. Chen SJ; Chen YT; Zeng LJ; Zhang QB; Lian GD; Li JJ; Yang KG; Huang CM; Li YQ; Chu ZH; Huang KH Tumour Biol; 2016 Aug; 37(8):11299-309. PubMed ID: 26951514 [TBL] [Abstract][Full Text] [Related]
17. Lunatic Fringe is a potent tumor suppressor in Kras-initiated pancreatic cancer. Zhang S; Chung WC; Xu K Oncogene; 2016 May; 35(19):2485-95. PubMed ID: 26279302 [TBL] [Abstract][Full Text] [Related]
18. FOXC2 is up-regulated in pancreatic ductal adenocarcinoma and promotes the growth and migration of cancer cells. Cui L; Dang S; Qu J; Mao Z; Wang X; Zhang J; Chen J Tumour Biol; 2016 Jul; 37(7):8579-85. PubMed ID: 26733175 [TBL] [Abstract][Full Text] [Related]
19. The anti-oxidative transcription factor Nuclear factor E2 related factor-2 (Nrf2) counteracts TGF-β1 mediated growth inhibition of pancreatic ductal epithelial cells -Nrf2 as determinant of pro-tumorigenic functions of TGF-β1. Genrich G; Kruppa M; Lenk L; Helm O; Broich A; Freitag-Wolf S; Röcken C; Sipos B; Schäfer H; Sebens S BMC Cancer; 2016 Feb; 16():155. PubMed ID: 26915435 [TBL] [Abstract][Full Text] [Related]
20. Regulation of GLI Underlies a Role for BET Bromodomains in Pancreatic Cancer Growth and the Tumor Microenvironment. Huang Y; Nahar S; Nakagawa A; Fernandez-Barrena MG; Mertz JA; Bryant BM; Adams CE; Mino-Kenudson M; Von Alt KN; Chang K; Conery AR; Hatton C; Sims RJ; Fernandez-Zapico ME; Wang X; Lillemoe KD; Fernández-Del Castillo C; Warshaw AL; Thayer SP; Liss AS Clin Cancer Res; 2016 Aug; 22(16):4259-70. PubMed ID: 27169995 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]