BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 29237735)

  • 21. Protocol to extract actively translated mRNAs from mouse hypothalamus by translating ribosome affinity purification.
    Han X; Burger LL; Garcia-Galiano D; Moenter SM; Myers MG; Olson DP; Elias CF
    STAR Protoc; 2021 Jun; 2(2):100589. PubMed ID: 34159322
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rapid Molecular Profiling of Defined Cell Types Using Viral TRAP.
    Nectow AR; Moya MV; Ekstrand MI; Mousa A; McGuire KL; Sferrazza CE; Field BC; Rabinowitz GS; Sawicka K; Liang Y; Friedman JM; Heintz N; Schmidt EF
    Cell Rep; 2017 Apr; 19(3):655-667. PubMed ID: 28423326
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A translational profiling approach for the molecular characterization of CNS cell types.
    Heiman M; Schaefer A; Gong S; Peterson JD; Day M; Ramsey KE; Suárez-Fariñas M; Schwarz C; Stephan DA; Surmeier DJ; Greengard P; Heintz N
    Cell; 2008 Nov; 135(4):738-48. PubMed ID: 19013281
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quantification of mRNA ribosomal engagement in human neurons using parallel translating ribosome affinity purification (TRAP) and RNA sequencing.
    Rodrigues DC; Mufteev M; Ellis J
    STAR Protoc; 2021 Mar; 2(1):100229. PubMed ID: 33364619
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Translating ribosome affinity purification (TRAP) for cell-specific translation profiling in developing flowers.
    Wang Y; Jiao Y
    Methods Mol Biol; 2014; 1110():323-8. PubMed ID: 24395267
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Exploring Ribosome Positioning on Translating Transcripts with Ribosome Profiling.
    Spealman P; Wang H; May G; Kingsford C; McManus CJ
    Methods Mol Biol; 2016; 1358():71-97. PubMed ID: 26463378
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Translating Ribosome Affinity Purification (TRAP) of Cell Type-specific mRNA from Mouse Brain Lysates.
    Salussolia CL; Winden KD; Sahin M
    Bio Protoc; 2022 May; 12(9):e4407. PubMed ID: 35800463
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Insights into the mechanisms of eukaryotic translation gained with ribosome profiling.
    Andreev DE; O'Connor PB; Loughran G; Dmitriev SE; Baranov PV; Shatsky IN
    Nucleic Acids Res; 2017 Jan; 45(2):513-526. PubMed ID: 27923997
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Purification, identification, and functional analysis of polysomes from the human pathogen Staphylococcus aureus.
    Brielle R; Pinel-Marie ML; Chat S; Gillet R; Felden B
    Methods; 2017 Mar; 117():59-66. PubMed ID: 27729294
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The extent of ribosome queuing in budding yeast.
    Diament A; Feldman A; Schochet E; Kupiec M; Arava Y; Tuller T
    PLoS Comput Biol; 2018 Jan; 14(1):e1005951. PubMed ID: 29377894
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Analysis of Ribosome-Associated mRNAs in Rice Reveals the Importance of Transcript Size and GC Content in Translation.
    Zhao D; Hamilton JP; Hardigan M; Yin D; He T; Vaillancourt B; Reynoso M; Pauluzzi G; Funkhouser S; Cui Y; Bailey-Serres J; Jiang J; Buell CR; Jiang N
    G3 (Bethesda); 2017 Jan; 7(1):203-219. PubMed ID: 27852012
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Gene Expression Profiling with Cre-Conditional Pseudorabies Virus Reveals a Subset of Midbrain Neurons That Participate in Reward Circuitry.
    Pomeranz LE; Ekstrand MI; Latcha KN; Smith GA; Enquist LW; Friedman JM
    J Neurosci; 2017 Apr; 37(15):4128-4144. PubMed ID: 28283558
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synthetic chimeras with orthogonal ribosomal proteins increase translation yields by recruiting mRNA for translation as measured by profiling active ribosomes.
    Cho SH; Contreras LM; Ju SH
    Biotechnol Prog; 2016 Mar; 32(2):285-93. PubMed ID: 26749267
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A single-copy knockin translating ribosome immunoprecipitation toolkit for tissue-specific profiling of actively translated mRNAs in
    Wester LE; Lanjuin A; Bruckisch EHW; Perez-Matos MC; Stine PG; Heintz C; Denzel MS; Mair WB
    Cell Rep Methods; 2023 Mar; 3(3):100433. PubMed ID: 37056370
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Generation of ribosome imprinted polymers for sensitive detection of translational responses.
    King HA; El-Sharif HF; Matia-González AM; Iadevaia V; Fowotade A; Reddy SM; Gerber AP
    Sci Rep; 2017 Jul; 7(1):6542. PubMed ID: 28747643
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ribosome profiling reveals the rhythmic liver translatome and circadian clock regulation by upstream open reading frames.
    Janich P; Arpat AB; Castelo-Szekely V; Lopes M; Gatfield D
    Genome Res; 2015 Dec; 25(12):1848-59. PubMed ID: 26486724
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A ribosome profiling study of mRNA cleavage by the endonuclease RelE.
    Hwang JY; Buskirk AR
    Nucleic Acids Res; 2017 Jan; 45(1):327-336. PubMed ID: 27924019
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Multi-protein bridging factor 1(Mbf1), Rps3 and Asc1 prevent stalled ribosomes from frameshifting.
    Wang J; Zhou J; Yang Q; Grayhack EJ
    Elife; 2018 Nov; 7():. PubMed ID: 30465652
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Purification of ribosomes from human cell lines.
    Belin S; Hacot S; Daudignon L; Therizols G; Pourpe S; Mertani HC; Rosa-Calatrava M; Diaz JJ
    Curr Protoc Cell Biol; 2010 Dec; Chapter 3():Unit 3.40. PubMed ID: 21154551
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molecular neuroscience: BAC-to-BAC images of the brain.
    Zoghbi HY
    Nature; 2003 Oct; 425(6961):907-8. PubMed ID: 14586449
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.