These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 29238528)

  • 1. Trends and uncertainties in budburst projections of Norway spruce in Northern Europe.
    Olsson C; Olin S; Lindström J; Jönsson AM
    Ecol Evol; 2017 Dec; 7(23):9954-9969. PubMed ID: 29238528
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spring wood phenology responds more strongly to chilling temperatures than bud phenology in European conifers.
    Lin S; Wang H; Dai J; Ge Q
    Tree Physiol; 2024 Feb; 44(1):. PubMed ID: 38079514
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Process-based models not always better than empirical models for simulating budburst of Norway spruce and birch in Europe.
    Olsson C; Jönsson AM
    Glob Chang Biol; 2014 Nov; 20(11):3492-507. PubMed ID: 24700779
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatial heterogeneity in the timing of birch budburst in response to future climate warming in Ireland.
    Caffarra A; Zottele F; Gleeson E; Donnelly A
    Int J Biometeorol; 2014 May; 58(4):509-19. PubMed ID: 24037345
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Asymmetric effects of cooler and warmer winters on beech phenology last beyond spring.
    Signarbieux C; Toledano E; Sanginés de Carcer P; Fu YH; Schlaepfer R; Buttler A; Vitasse Y
    Glob Chang Biol; 2017 Nov; 23(11):4569-4580. PubMed ID: 28464396
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phenological shifts in conifer species stressed by spruce budworm defoliation.
    Deslauriers A; Fournier MP; Cartenì F; Mackay J
    Tree Physiol; 2019 Apr; 39(4):590-605. PubMed ID: 30597102
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Responses of bud-break phenology to daily-asymmetric warming: daytime warming intensifies the advancement of bud break.
    Zhang S; Isabel N; Huang JG; Ren H; Rossi S
    Int J Biometeorol; 2019 Dec; 63(12):1631-1640. PubMed ID: 31385094
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic differentiation in the timing of budburst in Fagus crenata in relation to temperature and photoperiod.
    Osada N; Murase K; Tsuji K; Sawada H; Nunokawa K; Tsukahara M; Hiura T
    Int J Biometeorol; 2018 Sep; 62(9):1763-1776. PubMed ID: 29978264
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distinct genecological patterns in seedlings of Norway spruce and silver fir from a mountainous landscape.
    Frank A; Sperisen C; Howe GT; Brang P; Walthert L; St Clair JB; Heiri C
    Ecology; 2017 Jan; 98(1):211-227. PubMed ID: 28052396
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature alone does not explain phenological variation of diverse temperate plants under experimental warming.
    Marchin RM; Salk CF; Hoffmann WA; Dunn RR
    Glob Chang Biol; 2015 Aug; 21(8):3138-51. PubMed ID: 25736981
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in temperature sensitivity of spring phenology with recent climate warming in Switzerland are related to shifts of the preseason.
    Güsewell S; Furrer R; Gehrig R; Pietragalla B
    Glob Chang Biol; 2017 Dec; 23(12):5189-5202. PubMed ID: 28586135
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effectiveness of winter temperatures for satisfying chilling requirements for reproductive budburst of red alder (
    Prevéy JS; Harrington CA
    PeerJ; 2018; 6():e5221. PubMed ID: 30280010
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Feasting on the ordinary or starving for the exceptional in a warming climate: Phenological synchrony between spongy moth (
    Vitasse Y; Pohl N; Walde MG; Nadel H; Gossner MM; Baumgarten F
    Ecol Evol; 2024 Feb; 14(2):e10928. PubMed ID: 38371870
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Climatic control of bud burst in young seedlings of nine provenances of Norway spruce.
    Søgaard G; Johnsen O; Nilsen J; Junttila O
    Tree Physiol; 2008 Feb; 28(2):311-20. PubMed ID: 18055441
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Risk of genetic maladaptation due to climate change in three major European tree species.
    Frank A; Howe GT; Sperisen C; Brang P; Clair JBS; Schmatz DR; Heiri C
    Glob Chang Biol; 2017 Dec; 23(12):5358-5371. PubMed ID: 28675600
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impacts of changing climate on the productivity of Norway spruce dominant stands with a mixture of Scots pine and birch in relation to water availability in southern and northern Finland.
    Ge ZM; Kellomäki S; Peltola H; Zhou X; Wang KY; Väisänen H
    Tree Physiol; 2011 Mar; 31(3):323-38. PubMed ID: 21436231
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How does synchrony with host plant affect the performance of an outbreaking insect defoliator?
    Fuentealba A; Pureswaran D; Bauce É; Despland E
    Oecologia; 2017 Aug; 184(4):847-857. PubMed ID: 28756489
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shifts in the temperature-sensitive periods for spring phenology in European beech and pedunculate oak clones across latitudes and over recent decades.
    Wenden B; Mariadassou M; Chmielewski FM; Vitasse Y
    Glob Chang Biol; 2020 Mar; 26(3):1808-1819. PubMed ID: 31724292
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Warming and provenance limit tree recruitment across and beyond the elevation range of subalpine forest.
    Kueppers LM; Conlisk E; Castanha C; Moyes AB; Germino MJ; de Valpine P; Torn MS; Mitton JB
    Glob Chang Biol; 2017 Jun; 23(6):2383-2395. PubMed ID: 27976819
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Past and future evolution of Abies alba forests in Europe - comparison of a dynamic vegetation model with palaeo data and observations.
    Ruosch M; Spahni R; Joos F; Henne PD; van der Knaap WO; Tinner W
    Glob Chang Biol; 2016 Feb; 22(2):727-40. PubMed ID: 26316296
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.