These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
8. Monovalent Salt and pH-Induced Gelation of Oxidised Cellulose Nanofibrils and Starch Networks: Combining Rheology and Small-Angle X-ray Scattering. Hossain KMZ; Calabrese V; da Silva MA; Bryant SJ; Schmitt J; Ahn-Jarvis JH; Warren FJ; Khimyak YZ; Scott JL; Edler KJ Polymers (Basel); 2021 Mar; 13(6):. PubMed ID: 33808830 [TBL] [Abstract][Full Text] [Related]
9. Combined Small-Angle Neutron Scattering, Diffusion NMR, and Molecular Dynamics Study of a Eutectogel: Illuminating the Dynamical Behavior of Glyceline Confined in Bacterial Cellulose Gels. Smith CJ; Wagle DV; Bhawawet N; Gehrke S; Hollóczki O; Pingali SV; O'Neill H; Baker GA J Phys Chem B; 2020 Sep; 124(35):7647-7658. PubMed ID: 32790399 [TBL] [Abstract][Full Text] [Related]
10. Hierarchical architecture of bacterial cellulose and composite plant cell wall polysaccharide hydrogels using small angle neutron scattering. Martínez-Sanz M; Gidley MJ; Gilbert EP Soft Matter; 2016 Feb; 12(5):1534-49. PubMed ID: 26658920 [TBL] [Abstract][Full Text] [Related]
11. Rheology of cellulose nanofibrils in the presence of surfactants. Quennouz N; Hashmi SM; Choi HS; Kim JW; Osuji CO Soft Matter; 2016 Jan; 12(1):157-64. PubMed ID: 26466557 [TBL] [Abstract][Full Text] [Related]
12. In situ small-angle neutron scattering and rheological measurements of shear-induced gelation. Shibayama M; Kawada H; Kume T; Matsunaga T; Iwai H; Sano T; Osaka N; Miyazaki S; Okabe S; Endo H J Chem Phys; 2007 Oct; 127(14):144507. PubMed ID: 17935409 [TBL] [Abstract][Full Text] [Related]
13. Thermoreversible protein hydrogel as cell scaffold. Yan H; Saiani A; Gough JE; Miller AF Biomacromolecules; 2006 Oct; 7(10):2776-82. PubMed ID: 17025352 [TBL] [Abstract][Full Text] [Related]
14. Self-assembly of fibronectin mimetic peptide-amphiphile nanofibers. Rexeisen EL; Fan W; Pangburn TO; Taribagil RR; Bates FS; Lodge TP; Tsapatsis M; Kokkoli E Langmuir; 2010 Feb; 26(3):1953-9. PubMed ID: 19877715 [TBL] [Abstract][Full Text] [Related]
15. Cation-induced hydrogels of cellulose nanofibrils with tunable moduli. Dong H; Snyder JF; Williams KS; Andzelm JW Biomacromolecules; 2013 Sep; 14(9):3338-45. PubMed ID: 23919541 [TBL] [Abstract][Full Text] [Related]
16. Synthesis and characterization of cationically modified nanocrystalline cellulose. Zaman M; Xiao H; Chibante F; Ni Y Carbohydr Polym; 2012 Jun; 89(1):163-70. PubMed ID: 24750619 [TBL] [Abstract][Full Text] [Related]
17. Model films from native cellulose nanofibrils. Preparation, swelling, and surface interactions. Ahola S; Salmi J; Johansson LS; Laine J; Osterberg M Biomacromolecules; 2008 Apr; 9(4):1273-82. PubMed ID: 18307305 [TBL] [Abstract][Full Text] [Related]
18. Impact of fiber diameter and surface substituents on the mechanical and flow properties of sonicated cellulose dispersions. Kopač T; Ručigaj A Int J Biol Macromol; 2024 Oct; ():136210. PubMed ID: 39419686 [TBL] [Abstract][Full Text] [Related]
19. Solubilization of oils or addition of monoglycerides drives the formation of wormlike micelles with an elliptical cross-section in cholesterol-based surfactants: a study by rheology, SANS, and cryo-TEM. Afifi H; Karlsson G; Heenan RK; Dreiss CA Langmuir; 2011 Jun; 27(12):7480-92. PubMed ID: 21591650 [TBL] [Abstract][Full Text] [Related]
20. A study of alcohol-induced gelation of beta-lactoglobulin with small-angle neutron scattering, neutron spin echo, and dynamic light scattering measurements. Yoshida K; Yamaguchi T; Osaka N; Endo H; Shibayama M Phys Chem Chem Phys; 2010 Apr; 12(13):3260-9. PubMed ID: 20237717 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]