BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 29238817)

  • 1. Finite Element Framework for Computational Fluid Dynamics in FEBio.
    Ateshian GA; Shim JJ; Maas SA; Weiss JA
    J Biomech Eng; 2018 Feb; 140(2):0210011-02100117. PubMed ID: 29238817
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Finite Element Implementation of Biphasic-Fluid Structure Interactions in febio.
    Shim JJ; Maas SA; Weiss JA; Ateshian GA
    J Biomech Eng; 2021 Sep; 143(9):. PubMed ID: 33764435
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Formulation for Fluid-Structure Interactions in febio Using Mixture Theory.
    Shim JJ; Maas SA; Weiss JA; Ateshian GA
    J Biomech Eng; 2019 May; 141(5):0510101-05101015. PubMed ID: 30835271
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Finite Element Implementation of Computational Fluid Dynamics With Reactive Neutral and Charged Solute Transport in FEBio.
    Shim JJ; Maas SA; Weiss JA; Ateshian GA
    J Biomech Eng; 2023 Sep; 145(9):. PubMed ID: 37219843
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Plugin Framework for Extending the Simulation Capabilities of FEBio.
    Maas SA; LaBelle SA; Ateshian GA; Weiss JA
    Biophys J; 2018 Nov; 115(9):1630-1637. PubMed ID: 30297132
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FEBio: History and Advances.
    Maas SA; Ateshian GA; Weiss JA
    Annu Rev Biomed Eng; 2017 Jun; 19():279-299. PubMed ID: 28633565
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A systematic comparison between FEBio and PolyFEM for biomechanical systems.
    Martin L; Jain P; Ferguson Z; Gholamalizadeh T; Moshfeghifar F; Erleben K; Panozzo D; Abramowitch S; Schneider T
    Comput Methods Programs Biomed; 2024 Feb; 244():107938. PubMed ID: 38056313
    [TBL] [Abstract][Full Text] [Related]  

  • 8. FEBio: finite elements for biomechanics.
    Maas SA; Ellis BJ; Ateshian GA; Weiss JA
    J Biomech Eng; 2012 Jan; 134(1):011005. PubMed ID: 22482660
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Hybrid Reactive Multiphasic Mixture With a Compressible Fluid Solvent.
    Shim JJ; Ateshian GA
    J Biomech Eng; 2022 Jan; 144(1):. PubMed ID: 34318318
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Finite element methods for the biomechanics of soft hydrated tissues: nonlinear analysis and adaptive control of meshes.
    Spilker RL; de Almeida ES; Donzelli PS
    Crit Rev Biomed Eng; 1992; 20(3-4):279-313. PubMed ID: 1478094
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiphasic finite element framework for modeling hydrated mixtures with multiple neutral and charged solutes.
    Ateshian GA; Maas S; Weiss JA
    J Biomech Eng; 2013 Nov; 135(11):111001. PubMed ID: 23775399
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational fluid dynamics simulations for 3D muscle fiber architecture in finite element analysis: Comparisons between computational fluid dynamics and diffusion tensor imaging.
    Varvik J; Besier TF; Handsfield GG
    Int J Numer Method Biomed Eng; 2021 Dec; 37(12):e3521. PubMed ID: 34411442
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A quasi-incompressible and quasi-inextensible finite element analysis of fibrous soft biological tissues.
    Gültekin O; Rodoplu B; Dal H
    Biomech Model Mechanobiol; 2020 Dec; 19(6):2357-2373. PubMed ID: 32556738
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How to implement user-defined fiber-reinforced hyperelastic materials in finite element software.
    Fehervary H; Maes L; Vastmans J; Kloosterman G; Famaey N
    J Mech Behav Biomed Mater; 2020 Oct; 110():103737. PubMed ID: 32771879
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A sharp interface Lagrangian-Eulerian method for flexible-body fluid-structure interaction.
    Kolahdouz EM; Wells DR; Rossi S; Aycock KI; Craven BA; Griffith BE
    J Comput Phys; 2023 Sep; 488():. PubMed ID: 37214277
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental and CFD flow studies in an intracranial aneurysm model with Newtonian and non-Newtonian fluids.
    Frolov SV; Sindeev SV; Liepsch D; Balasso A
    Technol Health Care; 2016 May; 24(3):317-33. PubMed ID: 26835725
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of modeling fluid-structure interaction in the computational analysis of aortic root biomechanics.
    Sturla F; Votta E; Stevanella M; Conti CA; Redaelli A
    Med Eng Phys; 2013 Dec; 35(12):1721-30. PubMed ID: 24001692
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulation of Unit Operations in Formulation Development of Tablets Using Computational Fluid Dynamics.
    Hemamanjushree S; Tippavajhala VK
    AAPS PharmSciTech; 2020 Mar; 21(3):103. PubMed ID: 32166477
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Verification Benchmarks to Assess the Implementation of Computational Fluid Dynamics Based Hemolysis Prediction Models.
    Hariharan P; D'Souza G; Horner M; Malinauskas RA; Myers MR
    J Biomech Eng; 2015 Sep; 137(9):. PubMed ID: 26065371
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Red blood cell simulation using a coupled shell-fluid analysis purely based on the SPH method.
    Soleimani M; Sahraee S; Wriggers P
    Biomech Model Mechanobiol; 2019 Apr; 18(2):347-359. PubMed ID: 30377857
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.