BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

401 related articles for article (PubMed ID: 29238927)

  • 1. Metal-tolerant thermophiles: metals as electron donors and acceptors, toxicity, tolerance and industrial applications.
    Ranawat P; Rawat S
    Environ Sci Pollut Res Int; 2018 Feb; 25(5):4105-4133. PubMed ID: 29238927
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stress response physiology of thermophiles.
    Ranawat P; Rawat S
    Arch Microbiol; 2017 Apr; 199(3):391-414. PubMed ID: 28097384
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heavy-metal-induced reactive oxygen species: phytotoxicity and physicochemical changes in plants.
    Shahid M; Pourrut B; Dumat C; Nadeem M; Aslam M; Pinelli E
    Rev Environ Contam Toxicol; 2014; 232():1-44. PubMed ID: 24984833
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Geomicrobiological studies. XIV. Heavy metal tolerance of desulfurizing bacteria under various ecological conditions].
    Brecklinghaus J; Schwartz W; Näveke R
    Z Allg Mikrobiol; 1981; 21(2):65-76. PubMed ID: 7269648
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ferroplasma and relatives, recently discovered cell wall-lacking archaea making a living in extremely acid, heavy metal-rich environments.
    Golyshina OV; Timmis KN
    Environ Microbiol; 2005 Sep; 7(9):1277-88. PubMed ID: 16104851
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A critical review of the bioavailability and impacts of heavy metals in municipal solid waste composts compared to sewage sludge.
    Smith SR
    Environ Int; 2009 Jan; 35(1):142-56. PubMed ID: 18691760
    [TBL] [Abstract][Full Text] [Related]  

  • 7. From industrial sites to environmental applications with Cupriavidus metallidurans.
    Diels L; Van Roy S; Taghavi S; Van Houdt R
    Antonie Van Leeuwenhoek; 2009 Aug; 96(2):247-58. PubMed ID: 19582590
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biosorption of metal and salt tolerant microbial isolates from a former uranium mining area. Their impact on changes in rare earth element patterns in acid mine drainage.
    Haferburg G; Merten D; Büchel G; Kothe E
    J Basic Microbiol; 2007 Dec; 47(6):474-84. PubMed ID: 18072248
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wide pH range tolerance in extremophiles: towards understanding an important phenomenon for future biotechnology.
    Dhakar K; Pandey A
    Appl Microbiol Biotechnol; 2016 Mar; 100(6):2499-510. PubMed ID: 26780356
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arousing sleeping genes: shifts in secondary metabolism of metal tolerant actinobacteria under conditions of heavy metal stress.
    Haferburg G; Groth I; Möllmann U; Kothe E; Sattler I
    Biometals; 2009 Apr; 22(2):225-34. PubMed ID: 18704271
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heavy metal resistance strategies of acidophilic bacteria and their acquisition: importance for biomining and bioremediation.
    Navarro CA; von Bernath D; Jerez CA
    Biol Res; 2013; 46(4):363-71. PubMed ID: 24510139
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toxicity of heavy metals and metal-containing nanoparticles on plants.
    Mustafa G; Komatsu S
    Biochim Biophys Acta; 2016 Aug; 1864(8):932-44. PubMed ID: 26940747
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermophiles in the genomic era: Biodiversity, science, and applications.
    Urbieta MS; Donati ER; Chan KG; Shahar S; Sin LL; Goh KM
    Biotechnol Adv; 2015 Nov; 33(6 Pt 1):633-47. PubMed ID: 25911946
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization.
    Schützendübel A; Polle A
    J Exp Bot; 2002 May; 53(372):1351-65. PubMed ID: 11997381
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of halotolerant, pigmented, plant growth promoting bacteria of groundnut rhizosphere and its in-vitro evaluation of plant-microbe protocooperation to withstand salinity and metal stress.
    Banik A; Pandya P; Patel B; Rathod C; Dangar M
    Sci Total Environ; 2018 Jul; 630():231-242. PubMed ID: 29482138
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Thermophilic microbial metal reduction].
    Slobodkin AI
    Mikrobiologiia; 2005; 74(5):581-95. PubMed ID: 16315976
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metallomics: lessons for metalliferous soil remediation.
    Haferburg G; Kothe E
    Appl Microbiol Biotechnol; 2010 Jul; 87(4):1271-80. PubMed ID: 20532755
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of a New Heavy-Metal-Resistant Strain of
    Puopolo R; Gallo G; Mormone A; Limauro D; Contursi P; Piochi M; Bartolucci S; Fiorentino G
    Int J Environ Res Public Health; 2020 Apr; 17(8):. PubMed ID: 32295125
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular mechanisms of heavy metal hyperaccumulation and phytoremediation.
    Yang X; Feng Y; He Z; Stoffella PJ
    J Trace Elem Med Biol; 2005; 18(4):339-53. PubMed ID: 16028496
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microbial fuel cell driving electrokinetic remediation of toxic metal contaminated soils.
    Habibul N; Hu Y; Sheng GP
    J Hazard Mater; 2016 Nov; 318():9-14. PubMed ID: 27388419
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.