BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

401 related articles for article (PubMed ID: 29238927)

  • 21. Ecotoxic heavy metals transformation by bacteria and fungi in aquatic ecosystem.
    Chaturvedi AD; Pal D; Penta S; Kumar A
    World J Microbiol Biotechnol; 2015 Oct; 31(10):1595-603. PubMed ID: 26250544
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Trace elements in agroecosystems and impacts on the environment.
    He ZL; Yang XE; Stoffella PJ
    J Trace Elem Med Biol; 2005; 19(2-3):125-40. PubMed ID: 16325528
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Metal biorecovery and bioremediation: Whether or not thermophilic are better than mesophilic microorganisms.
    Castro C; Urbieta MS; Plaza Cazón J; Donati ER
    Bioresour Technol; 2019 May; 279():317-326. PubMed ID: 30755320
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of H+ ion activity and Ca2+ on the toxicity of metals in the environment.
    Hutchinson TC; Collins FW
    Environ Health Perspect; 1978 Aug; 25():47-52. PubMed ID: 31277
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of long-term radionuclide and heavy metal contamination on the activity of microbial communities, inhabiting uranium mining impacted soils.
    Boteva S; Radeva G; Traykov I; Kenarova A
    Environ Sci Pollut Res Int; 2016 Mar; 23(6):5644-53. PubMed ID: 26578378
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Thermophiles; or, the Modern Prometheus: The Importance of Extreme Microorganisms for Understanding and Applying Extracellular Electron Transfer.
    Lusk BG
    Front Microbiol; 2019; 10():818. PubMed ID: 31080440
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biochar modulates heavy metal toxicity and improves microbial carbon use efficiency in soil.
    Xu Y; Seshadri B; Sarkar B; Wang H; Rumpel C; Sparks D; Farrell M; Hall T; Yang X; Bolan N
    Sci Total Environ; 2018 Apr; 621():148-159. PubMed ID: 29179070
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Interaction of heavy metals with the sulphur metabolism in angiosperms from an ecological point of view.
    Ernst WH; Krauss GJ; Verkleij JA; Wesenberg D
    Plant Cell Environ; 2008 Jan; 31(1):123-43. PubMed ID: 17999660
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Correlation between multiple antibiotic resistance and heavy-metal tolerance among some E.coli strains isolated from polluted waters].
    Lazăr V; Cernat R; Balotescu C; Cotar A; Coipan E; Cojocaru C
    Bacteriol Virusol Parazitol Epidemiol; 2002; 47(3-4):155-60. PubMed ID: 15085605
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A further examination of heavy metal inhibition of gas production by thermophilic anaerobic sludges.
    Tomlin C; Forster CF
    Microbios; 1988; 56(226):7-17. PubMed ID: 3237120
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The influence of soil heavy metals pollution on soil microbial biomass, enzyme activity, and community composition near a copper smelter.
    Wang Y; Shi J; Wang H; Lin Q; Chen X; Chen Y
    Ecotoxicol Environ Saf; 2007 May; 67(1):75-81. PubMed ID: 16828162
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Phytoextraction of toxic metals: a review of biological mechanisms.
    Lasat MM
    J Environ Qual; 2002; 31(1):109-20. PubMed ID: 11837415
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Remediation of soils contaminated with heavy metals with an emphasis on immobilization technology.
    Derakhshan Nejad Z; Jung MC; Kim KH
    Environ Geochem Health; 2018 Jun; 40(3):927-953. PubMed ID: 28447234
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Environmental applications of chitosan and its derivatives.
    Yong SK; Shrivastava M; Srivastava P; Kunhikrishnan A; Bolan N
    Rev Environ Contam Toxicol; 2015; 233():1-43. PubMed ID: 25367132
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Metal-binding hydrogel particles alleviate soil toxicity and facilitate healthy plant establishment of the native metallophyte grass Astrebla lappacea in mine waste rock and tailings.
    Bigot M; Guterres J; Rossato L; Pudmenzky A; Doley D; Whittaker M; Pillai-McGarry U; Schmidt S
    J Hazard Mater; 2013 Mar; 248-249():424-34. PubMed ID: 23416487
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Physiological, metabolic and biotechnological features of extremely thermophilic microorganisms.
    Counts JA; Zeldes BM; Lee LL; Straub CT; Adams MWW; Kelly RM
    Wiley Interdiscip Rev Syst Biol Med; 2017 May; 9(3):. PubMed ID: 28206708
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Microbial resistance to metals in the environment.
    Bruins MR; Kapil S; Oehme FW
    Ecotoxicol Environ Saf; 2000 Mar; 45(3):198-207. PubMed ID: 10702338
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Deciphering Microbial Metal Toxicity Responses via Random Bar Code Transposon Site Sequencing and Activity-Based Metabolomics.
    Thorgersen MP; Xue J; Majumder ELW; Trotter VV; Ge X; Poole FL; Owens TK; Lui LM; Nielsen TN; Arkin AP; Deutschbauer AM; Siuzdak G; Adams MWW
    Appl Environ Microbiol; 2021 Oct; 87(21):e0103721. PubMed ID: 34432491
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Plant responses to metal toxicity.
    Briat JF; Lebrun M
    C R Acad Sci III; 1999 Jan; 322(1):43-54. PubMed ID: 10047953
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Understanding cellular responses to toxic agents: a model for mechanism-choice in bacterial metal resistance.
    Rouch DA; Lee BT; Morby AP
    J Ind Microbiol; 1995 Feb; 14(2):132-41. PubMed ID: 7766205
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.