BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

379 related articles for article (PubMed ID: 29239117)

  • 21. Using Drug Expression Profiles and Machine Learning Approach for Drug Repurposing.
    Zhao K; So HC
    Methods Mol Biol; 2019; 1903():219-237. PubMed ID: 30547445
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Update in research and methods in proteomics and bioinformatics.
    Bencharit S; Border MB; Edelmann A; Byrd WC
    Expert Rev Proteomics; 2013 Oct; 10(5):413-5. PubMed ID: 24117200
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Uncharacterized/hypothetical proteins in biomedical 'omics' experiments: is novelty being swept under the carpet?
    Pawłowski K
    Brief Funct Genomic Proteomic; 2008 Jul; 7(4):283-90. PubMed ID: 18641417
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Editorial of Special Issue "Deep Learning and Machine Learning in Bioinformatics".
    Kang M; Oh JH
    Int J Mol Sci; 2022 Jun; 23(12):. PubMed ID: 35743052
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Advancing from protein interactomes and gene co-expression networks towards multi-omics-based composite networks: approaches for predicting and extracting biological knowledge.
    Randhawa V; Pathania S
    Brief Funct Genomics; 2020 Dec; 19(5-6):364-376. PubMed ID: 32678894
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bioinformatics for proteomics.
    Ahrens C; Jespersen H; Schandorff S
    Methods Biochem Anal; 2005; 45():249-72. PubMed ID: 19235299
    [No Abstract]   [Full Text] [Related]  

  • 27. DeepProg: an ensemble of deep-learning and machine-learning models for prognosis prediction using multi-omics data.
    Poirion OB; Jing Z; Chaudhary K; Huang S; Garmire LX
    Genome Med; 2021 Jul; 13(1):112. PubMed ID: 34261540
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multi-Omics Model Applied to Cancer Genetics.
    Pettini F; Visibelli A; Cicaloni V; Iovinelli D; Spiga O
    Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34072237
    [TBL] [Abstract][Full Text] [Related]  

  • 29. From -omics to personalized medicine in nephrology: integration is the key.
    Pesce F; Pathan S; Schena FP
    Nephrol Dial Transplant; 2013 Jan; 28(1):24-8. PubMed ID: 23229923
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Global dynamics of biological systems from time-resolved omics experiments.
    Grigorov MG
    Bioinformatics; 2006 Jun; 22(12):1424-30. PubMed ID: 16585068
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Multiview learning for understanding functional multiomics.
    Nguyen ND; Wang D
    PLoS Comput Biol; 2020 Apr; 16(4):e1007677. PubMed ID: 32240163
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evaluating feature-selection stability in next-generation proteomics.
    Goh WW; Wong L
    J Bioinform Comput Biol; 2016 Oct; 14(5):1650029. PubMed ID: 27640811
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Application of Machine Learning Approaches for Protein-protein Interactions Prediction.
    Zhang M; Su Q; Lu Y; Zhao M; Niu B
    Med Chem; 2017; 13(6):506-514. PubMed ID: 28530547
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Increasing phytoremediation efficiency and reliability using novel omics approaches.
    Bell TH; Joly S; Pitre FE; Yergeau E
    Trends Biotechnol; 2014 May; 32(5):271-80. PubMed ID: 24735678
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structural proteomics: toward high-throughput structural biology as a tool in functional genomics.
    Yee A; Pardee K; Christendat D; Savchenko A; Edwards AM; Arrowsmith CH
    Acc Chem Res; 2003 Mar; 36(3):183-9. PubMed ID: 12641475
    [TBL] [Abstract][Full Text] [Related]  

  • 36. LEARNING PARSIMONIOUS ENSEMBLES FOR UNBALANCED COMPUTATIONAL GENOMICS PROBLEMS.
    Stanescu A; Pandey G
    Pac Symp Biocomput; 2017; 22():288-299. PubMed ID: 27896983
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Omics technologies, data and bioinformatics principles.
    Schneider MV; Orchard S
    Methods Mol Biol; 2011; 719():3-30. PubMed ID: 21370077
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Leveraging transformers-based language models in proteome bioinformatics.
    Le NQK
    Proteomics; 2023 Dec; 23(23-24):e2300011. PubMed ID: 37381841
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Improving protein disorder prediction by deep bidirectional long short-term memory recurrent neural networks.
    Hanson J; Yang Y; Paliwal K; Zhou Y
    Bioinformatics; 2017 Mar; 33(5):685-692. PubMed ID: 28011771
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Time to organize the bioinformatics resourceome.
    Cannata N; Merelli E; Altman RB
    PLoS Comput Biol; 2005 Dec; 1(7):e76. PubMed ID: 16738704
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.