BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 29239234)

  • 1. Adoption of in vitro systems and zebrafish embryos as alternative models for reducing rodent use in assessments of immunological and oxidative stress responses to nanomaterials.
    Johnston HJ; Verdon R; Gillies S; Brown DM; Fernandes TF; Henry TB; Rossi AG; Tran L; Tucker C; Tyler CR; Stone V
    Crit Rev Toxicol; 2018 Mar; 48(3):252-271. PubMed ID: 29239234
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Current Understanding of Autophagy in Nanomaterial Toxicity and Its Implementation in Safety Assessment-Related Alternative Testing Strategies.
    Chen RJ; Chen YY; Liao MY; Lee YH; Chen ZY; Yan SJ; Yeh YL; Yang LX; Lee YL; Wu YH; Wang YJ
    Int J Mol Sci; 2020 Mar; 21(7):. PubMed ID: 32235610
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The primacy of physicochemical characterization of nanomaterials for reliable toxicity assessment: a review of the zebrafish nanotoxicology model.
    Bohnsack JP; Assemi S; Miller JD; Furgeson DY
    Methods Mol Biol; 2012; 926():261-316. PubMed ID: 22975971
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intelligent testing strategy and analytical techniques for the safety assessment of nanomaterials.
    Chen R; Qiao J; Bai R; Zhao Y; Chen C
    Anal Bioanal Chem; 2018 Sep; 410(24):6051-6066. PubMed ID: 29550875
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of a high-throughput screening approach coupled with in vivo zebrafish embryo screening to develop hazard ranking for engineered nanomaterials.
    George S; Xia T; Rallo R; Zhao Y; Ji Z; Lin S; Wang X; Zhang H; France B; Schoenfeld D; Damoiseaux R; Liu R; Lin S; Bradley KA; Cohen Y; Nel AE
    ACS Nano; 2011 Mar; 5(3):1805-17. PubMed ID: 21323332
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Immunotoxicity, genotoxicity and epigenetic toxicity of nanomaterials: New strategies for toxicity testing?
    Dusinska M; Tulinska J; El Yamani N; Kuricova M; Liskova A; Rollerova E; Rundén-Pran E; Smolkova B
    Food Chem Toxicol; 2017 Nov; 109(Pt 1):797-811. PubMed ID: 28847762
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comprehensive In Vitro Toxicity Testing of a Panel of Representative Oxide Nanomaterials: First Steps towards an Intelligent Testing Strategy.
    Farcal L; Torres Andón F; Di Cristo L; Rotoli BM; Bussolati O; Bergamaschi E; Mech A; Hartmann NB; Rasmussen K; Riego-Sintes J; Ponti J; Kinsner-Ovaskainen A; Rossi F; Oomen A; Bos P; Chen R; Bai R; Chen C; Rocks L; Fulton N; Ross B; Hutchison G; Tran L; Mues S; Ossig R; Schnekenburger J; Campagnolo L; Vecchione L; Pietroiusti A; Fadeel B
    PLoS One; 2015; 10(5):e0127174. PubMed ID: 25996496
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An in vitro assessment of panel of engineered nanomaterials using a human renal cell line: cytotoxicity, pro-inflammatory response, oxidative stress and genotoxicity.
    Kermanizadeh A; Vranic S; Boland S; Moreau K; Baeza-Squiban A; Gaiser BK; Andrzejczuk LA; Stone V
    BMC Nephrol; 2013 Apr; 14():96. PubMed ID: 23617532
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Flow Cytometry-based Method for the Screening of Nanomaterial-induced Reactive Oxygen Species Production in Leukocytes Subpopulations in Whole Blood.
    Kermanizadeh A; Jantzen K; Brown DM; Møller P; Loft S
    Basic Clin Pharmacol Toxicol; 2018 Jan; 122(1):149-156. PubMed ID: 28691406
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aligning nanotoxicology with the 3Rs: What is needed to realise the short, medium and long-term opportunities?
    Burden N; Aschberger K; Chaudhry Q; Clift MJD; Fowler P; Johnston H; Landsiedel R; Rowland J; Stone V; Doak SH
    Regul Toxicol Pharmacol; 2017 Dec; 91():257-266. PubMed ID: 29069581
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A review of hepatic nanotoxicology - summation of recent findings and considerations for the next generation of study designs.
    Kermanizadeh A; Powell LG; Stone V
    J Toxicol Environ Health B Crit Rev; 2020 May; 23(4):137-176. PubMed ID: 32321383
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low-dose exposure of silica nanoparticles induces cardiac dysfunction via neutrophil-mediated inflammation and cardiac contraction in zebrafish embryos.
    Duan J; Yu Y; Li Y; Li Y; Liu H; Jing L; Yang M; Wang J; Li C; Sun Z
    Nanotoxicology; 2016; 10(5):575-85. PubMed ID: 26551753
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multifaceted toxicity assessment of catalyst composites in transgenic zebrafish embryos.
    Jang GH; Lee KY; Choi J; Kim SH; Lee KH
    Environ Pollut; 2016 Sep; 216():755-763. PubMed ID: 27364464
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toxicity of engineered nanomaterials to aquatic and land snails: A scientometric and systematic review.
    Caixeta MB; Araújo PS; Gonçalves BB; Silva LD; Grano-Maldonado MI; Rocha TL
    Chemosphere; 2020 Dec; 260():127654. PubMed ID: 32758772
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The zebrafish embryotoxicity test (ZET) for nanotoxicity assessment: from morphological to molecular approach.
    Pereira AC; Gomes T; Ferreira Machado MR; Rocha TL
    Environ Pollut; 2019 Sep; 252(Pt B):1841-1853. PubMed ID: 31325757
    [TBL] [Abstract][Full Text] [Related]  

  • 16. t⁴ workshop report. Nanotoxicology: "the end of the beginning" - signs on the roadmap to a strategy for assuring the safe application and use of nanomaterials.
    Silbergeld EK; Contreras EQ; Hartung T; Hirsch C; Hogberg H; Jachak AC; Jordan W; Landsiedel R; Morris J; Patri A; Pounds JG; de Vizcaya Ruiz A; Shvedova A; Tanguay R; Tatarazako N; van Vliet E; Walker NJ; Wiesner M; Wilcox N; Zurlo J
    ALTEX; 2011; 28(3):236-41. PubMed ID: 21993959
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adverse outcome pathways as a tool for the design of testing strategies to support the safety assessment of emerging advanced materials at the nanoscale.
    Halappanavar S; van den Brule S; Nymark P; Gaté L; Seidel C; Valentino S; Zhernovkov V; Høgh Danielsen P; De Vizcaya A; Wolff H; Stöger T; Boyadziev A; Poulsen SS; Sørli JB; Vogel U
    Part Fibre Toxicol; 2020 May; 17(1):16. PubMed ID: 32450889
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Copper Regulates the Susceptibility of Zebrafish Larvae to Inflammatory Stimuli by Controlling Neutrophil/Macrophage Survival.
    Chen M; Luo Y; Xu J; Chang MX; Liu JX
    Front Immunol; 2019; 10():2599. PubMed ID: 31787979
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acute ZnO nanoparticles exposure induces developmental toxicity, oxidative stress and DNA damage in embryo-larval zebrafish.
    Zhao X; Wang S; Wu Y; You H; Lv L
    Aquat Toxicol; 2013 Jul; 136-137():49-59. PubMed ID: 23643724
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    Phelps DW; Fletcher AA; Rodriguez-Nunez I; Balik-Meisner MR; Tokarz DA; Reif DM; Germolec DR; Yoder JA
    J Immunotoxicol; 2020 Dec; 17(1):94-104. PubMed ID: 32407153
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.