These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 2923927)

  • 1. Jerk-cost modulations during the practice of rapid arm movements.
    Schneider K; Zernicke RF
    Biol Cybern; 1989; 60(3):221-30. PubMed ID: 2923927
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Asymmetric velocity and acceleration profiles of human arm movements.
    Nagasaki H
    Exp Brain Res; 1989; 74(2):319-26. PubMed ID: 2924852
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accuracy of planar reaching movements. II. Systematic extent errors resulting from inertial anisotropy.
    Gordon J; Ghilardi MF; Cooper SE; Ghez C
    Exp Brain Res; 1994; 99(1):112-30. PubMed ID: 7925785
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Jerk Decomposition during Bimanual Independent Arm Cranking.
    Botzheim L; Mravcsik M; Zsenak I; Piovesan D; Laczko J
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():264-269. PubMed ID: 31374640
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Minimum acceleration criterion with constraints implies bang-bang control as an underlying principle for optimal trajectories of arm reaching movements.
    Ben-Itzhak S; Karniel A
    Neural Comput; 2008 Mar; 20(3):779-812. PubMed ID: 18045017
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in limb dynamics during the practice of rapid arm movements.
    Schneider K; Zernicke RF; Schmidt RA; Hart TJ
    J Biomech; 1989; 22(8-9):805-17. PubMed ID: 2613716
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Smoothness of human jaw movement during chewing.
    Yashiro K; Yamauchi T; Fujii M; Takada K
    J Dent Res; 1999 Oct; 78(10):1662-8. PubMed ID: 10520972
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An evaluation of the minimum-jerk and minimum torque-change principles at the path, trajectory, and movement-cost levels.
    Klein Breteler MD; Meulenbroek RG; Gielen SC
    Motor Control; 2002 Jan; 6(1):69-83. PubMed ID: 11890147
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinematic construction of the trajectory of sequential arm movements.
    Okadome T; Honda M
    Biol Cybern; 1999 Mar; 80(3):157-69. PubMed ID: 10192899
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessing Smoothness of Arm Movements With Jerk: A Comparison of Laterality, Contraction Mode and Plane of Elevation. A Pilot Study.
    Roren A; Mazarguil A; Vaquero-Ramos D; Deloose JB; Vidal PP; Nguyen C; Rannou F; Wang D; Oudre L; Lefèvre-Colau MM
    Front Bioeng Biotechnol; 2021; 9():782740. PubMed ID: 35127666
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The relationship between smoothness and performance during the practice of a lower limb obstacle avoidance task.
    Hreljac A
    Biol Cybern; 1993; 68(4):375-9. PubMed ID: 8476978
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Trajectories of arm pointing movements on the sagittal plane vary with both direction and speed.
    Papaxanthis C; Pozzo T; Schieppati M
    Exp Brain Res; 2003 Feb; 148(4):498-503. PubMed ID: 12582833
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative examinations of internal representations for arm trajectory planning: minimum commanded torque change model.
    Nakano E; Imamizu H; Osu R; Uno Y; Gomi H; Yoshioka T; Kawato M
    J Neurophysiol; 1999 May; 81(5):2140-55. PubMed ID: 10322055
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A compact representation of drawing movements with sequences of parabolic primitives.
    Polyakov F; Drori R; Ben-Shaul Y; Abeles M; Flash T
    PLoS Comput Biol; 2009 Jul; 5(7):e1000427. PubMed ID: 19578429
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinematic models and human elbow flexion movements: quantitative analysis.
    Wiegner AW; Wierzbicka MM
    Exp Brain Res; 1992; 88(3):665-73. PubMed ID: 1587325
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reaching movements with similar hand paths but different arm orientations. I. Activity of individual cells in motor cortex.
    Scott SH; Kalaska JF
    J Neurophysiol; 1997 Feb; 77(2):826-52. PubMed ID: 9065853
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differences in control of limb dynamics during dominant and nondominant arm reaching.
    Sainburg RL; Kalakanis D
    J Neurophysiol; 2000 May; 83(5):2661-75. PubMed ID: 10805666
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurement of jerk-cost using a triaxial piezoelectric accelerometer for the evaluation of jaw movement smoothness.
    Minami I; Oogai K; Nemoto T; Nakamura T; Igarashi Y; Wakabayashi N
    J Oral Rehabil; 2010 Aug; 37(8):590-5. PubMed ID: 20374437
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Smoothness maximization along a predefined path accurately predicts the speed profiles of complex arm movements.
    Todorov E; Jordan MI
    J Neurophysiol; 1998 Aug; 80(2):696-714. PubMed ID: 9705462
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes in motor cortex activity during reaching movements with similar hand paths but different arm postures.
    Scott SH; Kalaska JF
    J Neurophysiol; 1995 Jun; 73(6):2563-7. PubMed ID: 7666162
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.