These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 29239300)

  • 1. Hydrodynamic instabilities in miscible fluids.
    Truzzolillo D; Cipelletti L
    J Phys Condens Matter; 2018 Jan; 30(3):033001. PubMed ID: 29239300
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Viscous Wave Breaking and Ligament Formation in Microfluidic Systems.
    Hu X; Cubaud T
    Phys Rev Lett; 2018 Jul; 121(4):044502. PubMed ID: 30095958
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluid mixing from viscous fingering.
    Jha B; Cueto-Felgueroso L; Juanes R
    Phys Rev Lett; 2011 May; 106(19):194502. PubMed ID: 21668165
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Off-equilibrium surface tension in miscible fluids.
    Truzzolillo D; Cipelletti L
    Soft Matter; 2016 Dec; 13(1):13-21. PubMed ID: 27264076
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence for the existence of an effective interfacial tension between miscible fluids: isobutyric acid-water and 1-butanol-water in a spinning-drop tensiometer.
    Pojman JA; Whitmore C; Turco Liveri ML; Lombardo R; Marszalek J; Parker R; Zoltowski B
    Langmuir; 2006 Mar; 22(6):2569-77. PubMed ID: 16519456
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical study of pattern formation in miscible rotating Hele-Shaw flows.
    Chen CY; Chen CH; Miranda JA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Apr; 73(4 Pt 2):046306. PubMed ID: 16711928
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of Interfacial Tension on Viscous Multiphase Flows in Coaxial Microfluidic Channels.
    Dinh T; Cubaud T
    Langmuir; 2021 Jun; 37(24):7420-7429. PubMed ID: 34115496
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolution and Disappearance of Solvent Drops on Miscible Polymer Subphases.
    Stetten AZ; Treece BW; Corcoran TE; Garoff S; Przybycien TM; Tilton RD;
    Colloids Surf A Physicochem Eng Asp; 2018 Jun; 546():266-275. PubMed ID: 30416264
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kelvin-Helmholtz and Holmboe instabilities of a diffusive interface between miscible phases.
    Zagvozkin T; Vorobev A; Lyubimova T
    Phys Rev E; 2019 Aug; 100(2-1):023103. PubMed ID: 31574712
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical study of miscible fingering in a time-dependent gap Hele-Shaw cell.
    Chen CY; Chen CH; Miranda JA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 May; 71(5 Pt 2):056304. PubMed ID: 16089646
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Linear stability analysis of a horizontal phase boundary separating two miscible liquids.
    Kheniene A; Vorobev A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):022404. PubMed ID: 24032846
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaporation-induced Rayleigh-Taylor instabilities in polymer solutions.
    Mossige EJ; Chandran Suja V; Islamov M; Wheeler SF; Fuller GG
    Philos Trans A Math Phys Eng Sci; 2020 Jun; 378(2174):20190533. PubMed ID: 32507094
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Density-driven instabilities of variable-viscosity miscible fluids in a capillary tube.
    Meiburg E; Vanaparthy SH; Payr MD; Wilhelm D
    Ann N Y Acad Sci; 2004 Nov; 1027():383-402. PubMed ID: 15644370
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temperature effects on capillary instabilities in a thin nematic liquid crystalline fiber embedded in a viscous matrix.
    Cheong AG; Rey AD
    Eur Phys J E Soft Matter; 2002 Oct; 9(2):171-93. PubMed ID: 15015115
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Turbulent mixing and beyond: non-equilibrium processes from atomistic to astrophysical scales II.
    Abarzhi SI; Gauthier S; Sreenivasan KR
    Philos Trans A Math Phys Eng Sci; 2013 Nov; 371(2003):20130268. PubMed ID: 24146016
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spinning Drop Dynamics in Miscible and Immiscible Environments.
    Carbonaro A; Cipelletti L; Truzzolillo D
    Langmuir; 2019 Sep; 35(35):11330-11339. PubMed ID: 31403308
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Introduction to the focus issue: chemo-hydrodynamic patterns and instabilities.
    De Wit A; Eckert K; Kalliadasis S
    Chaos; 2012 Sep; 22(3):037101. PubMed ID: 23020492
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the phase-field modelling of a miscible liquid/liquid boundary.
    Xie R; Vorobev A
    J Colloid Interface Sci; 2016 Feb; 464():48-58. PubMed ID: 26609922
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation of miscible fluid microstructures by hydrodynamic focusing in plane geometries.
    Cubaud T; Mason TG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Nov; 78(5 Pt 2):056308. PubMed ID: 19113217
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Minimal model for zero-inertia instabilities in shear-dominated non-Newtonian flows.
    Boi S; Mazzino A; Pralits JO
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):033007. PubMed ID: 24125344
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.