These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

426 related articles for article (PubMed ID: 29239328)

  • 1. Leap Motion-based virtual reality training for improving motor functional recovery of upper limbs and neural reorganization in subacute stroke patients.
    Wang ZR; Wang P; Xing L; Mei LP; Zhao J; Zhang T
    Neural Regen Res; 2017 Nov; 12(11):1823-1831. PubMed ID: 29239328
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism of Kinect-based virtual reality training for motor functional recovery of upper limbs after subacute stroke.
    Bao X; Mao Y; Lin Q; Qiu Y; Chen S; Li L; Cates RS; Zhou S; Huang D
    Neural Regen Res; 2013 Nov; 8(31):2904-13. PubMed ID: 25206611
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel upper-limb tracking system in a virtual environment for stroke rehabilitation.
    Cha K; Wang J; Li Y; Shen L; Chen Z; Long J
    J Neuroeng Rehabil; 2021 Nov; 18(1):166. PubMed ID: 34838086
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Effect of Robot-Mediated Virtual Reality Gaming on Upper Limb Spasticity Poststroke: A Randomized-Controlled Trial.
    Abd El-Kafy EM; Alshehri MA; El-Fiky AA; Guermazi MA; Mahmoud HM
    Games Health J; 2022 Apr; 11(2):93-103. PubMed ID: 35100025
    [No Abstract]   [Full Text] [Related]  

  • 5. The Effect of Virtual Reality-Based Therapy on Improving Upper Limb Functions in Individuals With Stroke: A Randomized Control Trial.
    El-Kafy EMA; Alshehri MA; El-Fiky AA; Guermazi MA
    Front Aging Neurosci; 2021; 13():731343. PubMed ID: 34795574
    [No Abstract]   [Full Text] [Related]  

  • 6. Evaluating the effect and mechanism of upper limb motor function recovery induced by immersive virtual-reality-based rehabilitation for subacute stroke subjects: study protocol for a randomized controlled trial.
    Huang Q; Wu W; Chen X; Wu B; Wu L; Huang X; Jiang S; Huang L
    Trials; 2019 Feb; 20(1):104. PubMed ID: 30728055
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Can specific virtual reality combined with conventional rehabilitation improve poststroke hand motor function? A randomized clinical trial.
    Rodríguez-Hernández M; Polonio-López B; Corregidor-Sánchez AI; Martín-Conty JL; Mohedano-Moriano A; Criado-Álvarez JJ
    J Neuroeng Rehabil; 2023 Apr; 20(1):38. PubMed ID: 37016408
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficacy and safety of non-immersive virtual reality exercising in stroke rehabilitation (EVREST): a randomised, multicentre, single-blind, controlled trial.
    Saposnik G; Cohen LG; Mamdani M; Pooyania S; Ploughman M; Cheung D; Shaw J; Hall J; Nord P; Dukelow S; Nilanont Y; De Los Rios F; Olmos L; Levin M; Teasell R; Cohen A; Thorpe K; Laupacis A; Bayley M;
    Lancet Neurol; 2016 Sep; 15(10):1019-27. PubMed ID: 27365261
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Effect of Kinesio Taping Combined with Virtual-Reality-Based Upper Extremity Training on Upper Extremity Function and Self-Esteem in Stroke Patients.
    Yang SW; Ma SR; Choi JB
    Healthcare (Basel); 2023 Jun; 11(13):. PubMed ID: 37444646
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of virtual reality-based planar motion exercises on upper extremity function, range of motion, and health-related quality of life: a multicenter, single-blinded, randomized, controlled pilot study.
    Park M; Ko MH; Oh SW; Lee JY; Ham Y; Yi H; Choi Y; Ha D; Shin JH
    J Neuroeng Rehabil; 2019 Oct; 16(1):122. PubMed ID: 31651335
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intensive virtual reality-based training for upper limb motor function in chronic stroke: a feasibility study using a single case experimental design and fMRI.
    Schuster-Amft C; Henneke A; Hartog-Keisker B; Holper L; Siekierka E; Chevrier E; Pyk P; Kollias S; Kiper D; Eng K
    Disabil Rehabil Assist Technol; 2015; 10(5):385-92. PubMed ID: 24730659
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of virtual reality-based motor rehabilitation: a systematic review of fMRI studies.
    Feitosa JA; Fernandes CA; Casseb RF; Castellano G
    J Neural Eng; 2022 Jan; 19(1):. PubMed ID: 34933281
    [No Abstract]   [Full Text] [Related]  

  • 13. The Association Between Reorganization of Bilateral M1 Topography and Function in Response to Early Intensive Hand Focused Upper Limb Rehabilitation Following Stroke Is Dependent on Ipsilesional Corticospinal Tract Integrity.
    Yarossi M; Patel J; Qiu Q; Massood S; Fluet G; Merians A; Adamovich S; Tunik E
    Front Neurol; 2019; 10():258. PubMed ID: 30972004
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Virtual Reality in Upper Extremity Rehabilitation of Stroke Patients: A Randomized Controlled Trial.
    Ikbali Afsar S; Mirzayev I; Umit Yemisci O; Cosar Saracgil SN
    J Stroke Cerebrovasc Dis; 2018 Dec; 27(12):3473-3478. PubMed ID: 30193810
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of a mixed reality-based intervention on arm, hand, and finger function on chronic stroke.
    Colomer C; Llorens R; Noé E; Alcañiz M
    J Neuroeng Rehabil; 2016 May; 13(1):45. PubMed ID: 27169462
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of New Technologies on Post-Stroke Rehabilitation: A Comparison of Armeo Spring to the Kinect System.
    Adomavičienė A; Daunoravičienė K; Kubilius R; Varžaitytė L; Raistenskis J
    Medicina (Kaunas); 2019 Apr; 55(4):. PubMed ID: 30970655
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Virtual reality-based treatment for regaining upper extremity function induces cortex grey matter changes in persons with acquired brain injury.
    Keller J; Štětkářová I; Macri V; Kühn S; Pětioký J; Gualeni S; Simmons СD; Arthanat S; Zilber P
    J Neuroeng Rehabil; 2020 Sep; 17(1):127. PubMed ID: 32919473
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increasing upper limb training intensity in chronic stroke using embodied virtual reality: a pilot study.
    Perez-Marcos D; Chevalley O; Schmidlin T; Garipelli G; Serino A; Vuadens P; Tadi T; Blanke O; Millán JDR
    J Neuroeng Rehabil; 2017 Nov; 14(1):119. PubMed ID: 29149855
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cerebral Reorganization in Subacute Stroke Survivors after Virtual Reality-Based Training: A Preliminary Study.
    Xiao X; Lin Q; Lo WL; Mao YR; Shi XC; Cates RS; Zhou SF; Huang DF; Li L
    Behav Neurol; 2017; 2017():6261479. PubMed ID: 28720981
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of low-cost virtual reality in the treatment of the upper extremity in chronic stroke: a randomized clinical trial.
    Aguilera-Rubio Á; Alguacil-Diego IM; Mallo-López A; Jardón Huete A; Oña ED; Cuesta-Gómez A
    J Neuroeng Rehabil; 2024 Jan; 21(1):12. PubMed ID: 38254147
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.