These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 29239385)

  • 1. Repairing the neural highway.
    Holmes D
    Nature; 2017 Dec; 552(7684):S50-S51. PubMed ID: 29239385
    [No Abstract]   [Full Text] [Related]  

  • 2. Spinal-cord injury: spurring regrowth.
    Holmes D
    Nature; 2017 Dec; 552(7684):S49. PubMed ID: 29239374
    [No Abstract]   [Full Text] [Related]  

  • 3. [Basic strategy of rehabilitation for regeneration of spinal cord nerve].
    Tajima F; Nakamura T
    Rinsho Shinkeigaku; 2013; 53(11):1183. PubMed ID: 24291922
    [No Abstract]   [Full Text] [Related]  

  • 4. Potential of human dental stem cells in repairing the complete transection of rat spinal cord.
    Yang C; Li X; Sun L; Guo W; Tian W
    J Neural Eng; 2017 Apr; 14(2):026005. PubMed ID: 28085005
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mesenchymal Stem Cells for Spinal Cord Injury: Current Options, Limitations, and Future of Cell Therapy.
    Cofano F; Boido M; Monticelli M; Zenga F; Ducati A; Vercelli A; Garbossa D
    Int J Mol Sci; 2019 May; 20(11):. PubMed ID: 31159345
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human dental mesenchymal stem cells and neural regeneration.
    Xiao L; Tsutsui T
    Hum Cell; 2013 Sep; 26(3):91-6. PubMed ID: 23817972
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mesenchymal stem cells as an alternative for Schwann cells in rat spinal cord injury.
    Zaminy A; Shokrgozar MA; Sadeghi Y; Noroozian M; Heidari MH; Piryaei A
    Iran Biomed J; 2013; 17(3):113-22. PubMed ID: 23748888
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Collagen scaffold combined with human umbilical cord-derived mesenchymal stem cells promote functional recovery after scar resection in rats with chronic spinal cord injury.
    Wang N; Xiao Z; Zhao Y; Wang B; Li X; Li J; Dai J
    J Tissue Eng Regen Med; 2018 Feb; 12(2):e1154-e1163. PubMed ID: 28482124
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The superiority of conditioned medium derived from rapidly expanded mesenchymal stem cells for neural repair.
    Chen YT; Tsai MJ; Hsieh N; Lo MJ; Lee MJ; Cheng H; Huang WC
    Stem Cell Res Ther; 2019 Dec; 10(1):390. PubMed ID: 31842998
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human mesenchymal cells from adipose tissue deposit laminin and promote regeneration of injured spinal cord in rats.
    Menezes K; Nascimento MA; Gonçalves JP; Cruz AS; Lopes DV; Curzio B; Bonamino M; de Menezes JR; Borojevic R; Rossi MI; Coelho-Sampaio T
    PLoS One; 2014; 9(5):e96020. PubMed ID: 24830794
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spinal cord injury repair using mesenchymal stem cells derived from bone marrow in mice: A stereological study.
    Khodabandeh Z; Mehrabani D; Dehghani F; Gashmardi N; Erfanizadeh M; Zare S; Bozorg-Ghalati F
    Acta Histochem; 2021 Jul; 123(5):151720. PubMed ID: 34083065
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New therapy for spinal cord injury shows positive results in rodent model.
    Regen Med; 2011 Mar; 6(2):142-3. PubMed ID: 21513086
    [No Abstract]   [Full Text] [Related]  

  • 13. Autocrine fibronectin from differentiating mesenchymal stem cells induces the neurite elongation in vitro and promotes nerve fiber regeneration in transected spinal cord injury.
    Zeng X; Ma YH; Chen YF; Qiu XC; Wu JL; Ling EA; Zeng YS
    J Biomed Mater Res A; 2016 Aug; 104(8):1902-11. PubMed ID: 26991461
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cellular therapy for treatment of spinal cord injury in Zebrafish model.
    Tayanloo-Beik A; Rabbani Z; Soveyzi F; Alavi-Moghadam S; Rezaei-Tavirani M; Goodarzi P; Arjmand B; Larijani B
    Mol Biol Rep; 2021 Feb; 48(2):1787-1800. PubMed ID: 33459959
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adult bone marrow mesenchymal and neural crest stem cells are chemoattractive and accelerate motor recovery in a mouse model of spinal cord injury.
    Neirinckx V; Agirman G; Coste C; Marquet A; Dion V; Rogister B; Franzen R; Wislet S
    Stem Cell Res Ther; 2015 Nov; 6():211. PubMed ID: 26530515
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electro-acupuncture promotes differentiation of mesenchymal stem cells, regeneration of nerve fibers and partial functional recovery after spinal cord injury.
    Yan Q; Ruan JW; Ding Y; Li WJ; Li Y; Zeng YS
    Exp Toxicol Pathol; 2011 Jan; 63(1-2):151-6. PubMed ID: 20005688
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A prevascularized nerve conduit based on a stem cell sheet effectively promotes the repair of transected spinal cord injury.
    Fan Z; Liao X; Tian Y; Xuzhuzi X; Nie Y
    Acta Biomater; 2020 Jan; 101():304-313. PubMed ID: 31678739
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human Pluripotent Stem Cells for Spinal Cord Injury.
    Farzaneh M; Anbiyaiee A; Khoshnam SE
    Curr Stem Cell Res Ther; 2020; 15(2):135-143. PubMed ID: 31656156
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transplantation of human bone marrow-derived clonal mesenchymal stem cells reduces fibrotic scar formation in a rat spinal cord injury model.
    Kim M; Kim KH; Song SU; Yi TG; Yoon SH; Park SR; Choi BH
    J Tissue Eng Regen Med; 2018 Feb; 12(2):e1034-e1045. PubMed ID: 28112873
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Medicine: clearing a path for nerve growth.
    Olson L
    Nature; 2002 Apr; 416(6881):589-90. PubMed ID: 11948332
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.