These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 29239410)

  • 1. Uptake and transcytosis of functionalized superparamagnetic iron oxide nanoparticles in an in vitro blood brain barrier model.
    Ivask A; Pilkington EH; Blin T; Käkinen A; Vija H; Visnapuu M; Quinn JF; Whittaker MR; Qiao R; Davis TP; Ke PC; Voelcker NH
    Biomater Sci; 2018 Jan; 6(2):314-323. PubMed ID: 29239410
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasma Proteome Association and Catalytic Activity of Stealth Polymer-Grafted Iron Oxide Nanoparticles.
    Wang M; Siddiqui G; Gustafsson OJR; Käkinen A; Javed I; Voelcker NH; Creek DJ; Ke PC; Davis TP
    Small; 2017 Sep; 13(36):. PubMed ID: 28783260
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Binding, transcytosis and biodistribution of anti-PECAM-1 iron oxide nanoparticles for brain-targeted delivery.
    Dan M; Cochran DB; Yokel RA; Dziubla TD
    PLoS One; 2013; 8(11):e81051. PubMed ID: 24278373
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alternating magnetic field-induced hyperthermia increases iron oxide nanoparticle cell association/uptake and flux in blood-brain barrier models.
    Dan M; Bae Y; Pittman TA; Yokel RA
    Pharm Res; 2015 May; 32(5):1615-25. PubMed ID: 25377069
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Receptor-mediated delivery of magnetic nanoparticles across the blood-brain barrier.
    Qiao R; Jia Q; Hüwel S; Xia R; Liu T; Gao F; Galla HJ; Gao M
    ACS Nano; 2012 Apr; 6(4):3304-10. PubMed ID: 22443607
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New Insight about Biocompatibility and Biodegradability of Iron Oxide Magnetic Nanoparticles: Stereological and In Vivo MRI Monitor.
    Nosrati H; Salehiabar M; Fridoni M; Abdollahifar MA; Kheiri Manjili H; Davaran S; Danafar H
    Sci Rep; 2019 May; 9(1):7173. PubMed ID: 31073222
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A filter-free blood-brain barrier model to quantitatively study transendothelial delivery of nanoparticles by fluorescence spectroscopy.
    De Jong E; Williams DS; Abdelmohsen LKEA; Van Hest JCM; Zuhorn IS
    J Control Release; 2018 Nov; 289():14-22. PubMed ID: 30243824
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magnetic field enhanced convective diffusion of iron oxide nanoparticles in an osmotically disrupted cell culture model of the blood-brain barrier.
    Sun Z; Worden M; Wroczynskyj Y; Yathindranath V; van Lierop J; Hegmann T; Miller DW
    Int J Nanomedicine; 2014; 9():3013-26. PubMed ID: 25018630
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of core size and PEG coating layer of iron oxide nanoparticles on the distribution and metabolism in mice.
    Xue W; Liu Y; Zhang N; Yao Y; Ma P; Wen H; Huang S; Luo Y; Fan H
    Int J Nanomedicine; 2018; 13():5719-5731. PubMed ID: 30310275
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biodistribution of negatively charged iron oxide nanoparticles (IONPs) in mice and enhanced brain delivery using lysophosphatidic acid (LPA).
    Sun Z; Worden M; Thliveris JA; Hombach-Klonisch S; Klonisch T; van Lierop J; Hegmann T; Miller DW
    Nanomedicine; 2016 Oct; 12(7):1775-1784. PubMed ID: 27125435
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimizing superparamagnetic iron oxide nanoparticles as drug carriers using an in vitro blood-brain barrier model.
    Shi D; Mi G; Bhattacharya S; Nayar S; Webster TJ
    Int J Nanomedicine; 2016; 11():5371-5379. PubMed ID: 27799764
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Endocytotic uptake of iron oxide nanoparticles by cultured brain microglial cells.
    Luther EM; Petters C; Bulcke F; Kaltz A; Thiel K; Bickmeyer U; Dringen R
    Acta Biomater; 2013 Sep; 9(9):8454-65. PubMed ID: 23727247
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasma protein adsorption on Fe
    Escamilla-Rivera V; Solorio-Rodríguez A; Uribe-Ramírez M; Lozano O; Lucas S; Chagolla-López A; Winkler R; De Vizcaya-Ruiz A
    Int J Nanomedicine; 2019; 14():2055-2067. PubMed ID: 30988608
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and interfacing of biocompatible iron oxide nanoparticles through the ferroxidase activity of Helicobacter Pylori ferritin.
    Lee IL; Li PS; Yu WL; Shen HH
    Biofabrication; 2012 Dec; 4(4):045001. PubMed ID: 23013844
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Block copolymer cross-linked nanoassemblies improve particle stability and biocompatibility of superparamagnetic iron oxide nanoparticles.
    Dan M; Scott DF; Hardy PA; Wydra RJ; Hilt JZ; Yokel RA; Bae Y
    Pharm Res; 2013 Feb; 30(2):552-61. PubMed ID: 23080062
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Drug/Dye-Loaded, Multifunctional PEG-Chitosan-Iron Oxide Nanocomposites for Methotraxate Synergistically Self-Targeted Cancer Therapy and Dual Model Imaging.
    Lin J; Li Y; Li Y; Wu H; Yu F; Zhou S; Xie L; Luo F; Lin C; Hou Z
    ACS Appl Mater Interfaces; 2015 Jun; 7(22):11908-20. PubMed ID: 25978458
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The elemental changes occurring in the rat liver after exposure to PEG-coated iron oxide nanoparticles: total reflection x-ray fluorescence (TXRF) spectroscopy study.
    Matusiak K; Skoczen A; Setkowicz Z; Kubala-Kukus A; Stabrawa I; Ciarach M; Janeczko K; Jung A; Chwiej J
    Nanotoxicology; 2017; 11(9-10):1225-1236. PubMed ID: 29183205
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cellular interactions of functionalized superparamagnetic iron oxide nanoparticles on oligodendrocytes without detrimental side effects: Cell death induction, oxidative stress and inflammation.
    Sruthi S; Maurizi L; Nury T; Sallem F; Boudon J; Riedinger JM; Millot N; Bouyer F; Lizard G
    Colloids Surf B Biointerfaces; 2018 Oct; 170():454-462. PubMed ID: 29958160
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lysosomal iron liberation is responsible for the vulnerability of brain microglial cells to iron oxide nanoparticles: comparison with neurons and astrocytes.
    Petters C; Thiel K; Dringen R
    Nanotoxicology; 2016; 10(3):332-42. PubMed ID: 26287375
    [TBL] [Abstract][Full Text] [Related]  

  • 20. One-pot facile synthesis of PEGylated superparamagnetic iron oxide nanoparticles for MRI contrast enhancement.
    Dai L; Liu Y; Wang Z; Guo F; Shi D; Zhang B
    Mater Sci Eng C Mater Biol Appl; 2014 Aug; 41():161-7. PubMed ID: 24907749
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.