These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 29239620)

  • 1. Wax Spreading in Paper under Controlled Pressure and Temperature.
    Hong W; Zhou J; Kanungo M; Jia N; Dinsmore AD
    Langmuir; 2018 Jan; 34(1):432-441. PubMed ID: 29239620
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Understanding wax screen-printing: a novel patterning process for microfluidic cloth-based analytical devices.
    Liu M; Zhang C; Liu F
    Anal Chim Acta; 2015 Sep; 891():234-46. PubMed ID: 26388382
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A low-cost, simple, and rapid fabrication method for paper-based microfluidics using wax screen-printing.
    Dungchai W; Chailapakul O; Henry CS
    Analyst; 2011 Jan; 136(1):77-82. PubMed ID: 20871884
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Understanding wax printing: a simple micropatterning process for paper-based microfluidics.
    Carrilho E; Martinez AW; Whitesides GM
    Anal Chem; 2009 Aug; 81(16):7091-5. PubMed ID: 20337388
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combining Wax Printing with Hot Embossing for the Design of Geometrically Well-Defined Microfluidic Papers.
    Postulka N; Striegel A; Krauße M; Mager D; Spiehl D; Meckel T; Worgull M; Biesalski M
    ACS Appl Mater Interfaces; 2019 Jan; 11(4):4578-4587. PubMed ID: 30582798
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of biofunctionalized microfluidic structures by low-temperature wax bonding.
    Díaz-González M; Baldi A
    Anal Chem; 2012 Sep; 84(18):7838-44. PubMed ID: 22905798
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel, simple and low-cost alternative method for fabrication of paper-based microfluidics by wax dipping.
    Songjaroen T; Dungchai W; Chailapakul O; Laiwattanapaisal W
    Talanta; 2011 Oct; 85(5):2587-93. PubMed ID: 21962687
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temperature effects on dynamic water absorption into paper.
    Songok J; Salminen P; Toivakka M
    J Colloid Interface Sci; 2014 Mar; 418():373-7. PubMed ID: 24461858
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of paper devices via laser-heating-wax-printing for high-tech enzyme-linked immunosorbent assays with low-tech pen-type pH meter readout.
    Le S; Zhou H; Nie J; Cao C; Yang J; Pan H; Li J; Zhang Y
    Analyst; 2017 Jan; 142(3):511-516. PubMed ID: 28106171
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-ply channels for faster wicking in paper-based microfluidic devices.
    Camplisson CK; Schilling KM; Pedrotti WL; Stone HA; Martinez AW
    Lab Chip; 2015 Dec; 15(23):4461-6. PubMed ID: 26477676
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid and alternative fabrication method for microfluidic paper based analytical devices.
    Malekghasemi S; Kahveci E; Duman M
    Talanta; 2016 Oct; 159():401-411. PubMed ID: 27474324
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of paper-based microfluidic sensors by printing.
    Li X; Tian J; Garnier G; Shen W
    Colloids Surf B Biointerfaces; 2010 Apr; 76(2):564-70. PubMed ID: 20097546
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pysanky to Microfluidics: An Innovative Wax-Based Approach to Low Cost, Rapid Prototyping of Microfluidic Devices.
    Schneider PJ; Christie LB; Eadie NM; Siskar TJ; Sukhotskiy V; Koh D; Wang A; Oh KW
    Micromachines (Basel); 2024 Feb; 15(2):. PubMed ID: 38398969
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication and characterization of paper-based microfluidics prepared in nitrocellulose membrane by wax printing.
    Lu Y; Shi W; Qin J; Lin B
    Anal Chem; 2010 Jan; 82(1):329-35. PubMed ID: 20000582
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting Dimensions in Microfluidic Paper Based Analytical Devices.
    Catalan-Carrio R; Akyazi T; Basabe-Desmonts L; Benito-Lopez F
    Sensors (Basel); 2020 Dec; 21(1):. PubMed ID: 33375225
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Laser-induced selective wax reflow for paper-based microfluidics.
    Zhang Y; Liu J; Wang H; Fan Y
    RSC Adv; 2019 Apr; 9(20):11460-11464. PubMed ID: 35520212
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The air-gap PAD: a roll-to-roll-compatible fabrication method for paper microfluidics.
    Roller RM; Rea A; Lieberman M
    Lab Chip; 2023 Mar; 23(7):1918-1925. PubMed ID: 36883463
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermally actuated wax valves for paper-fluidic diagnostics.
    Phillips EA; Shen R; Zhao S; Linnes JC
    Lab Chip; 2016 Oct; 16(21):4230-4236. PubMed ID: 27722697
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toward instrument-free digital measurements: a three-dimensional microfluidic device fabricated in a single sheet of paper by double-sided printing and lamination.
    Jeong SG; Lee SH; Choi CH; Kim J; Lee CS
    Lab Chip; 2015 Feb; 15(4):1188-94. PubMed ID: 25571937
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of microtiter plate on paper using 96-well plates for wax stamping.
    Borah M; Maheswari D; Dutta HS
    Microfluid Nanofluidics; 2022; 26(12):99. PubMed ID: 36349227
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.