These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 29239859)

  • 1. Sensing the flow beneath the fins.
    Bora M; Kottapalli AGP; Miao J; Triantafyllou MS
    Bioinspir Biomim; 2018 Jan; 13(2):025002. PubMed ID: 29239859
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Artificial fish skin of self-powered micro-electromechanical systems hair cells for sensing hydrodynamic flow phenomena.
    Asadnia M; Kottapalli AG; Miao J; Warkiani ME; Triantafyllou MS
    J R Soc Interface; 2015 Oct; 12(111):20150322. PubMed ID: 26423435
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Touch at a distance sensing: lateral-line inspired MEMS flow sensors.
    Prakash Kottapalli AG; Asadnia M; Miao J; Triantafyllou M
    Bioinspir Biomim; 2014 Nov; 9(4):046011. PubMed ID: 25378298
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanofibril scaffold assisted MEMS artificial hydrogel neuromasts for enhanced sensitivity flow sensing.
    Kottapalli AG; Bora M; Asadnia M; Miao J; Venkatraman SS; Triantafyllou M
    Sci Rep; 2016 Jan; 6():19336. PubMed ID: 26763299
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cupula-Inspired Hyaluronic Acid-Based Hydrogel Encapsulation to Form Biomimetic MEMS Flow Sensors.
    Kottapalli AGP; Bora M; Kanhere E; Asadnia M; Miao J; Triantafyllou MS
    Sensors (Basel); 2017 Jul; 17(8):. PubMed ID: 28788059
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fish-inspired robots: design, sensing, actuation, and autonomy--a review of research.
    Raj A; Thakur A
    Bioinspir Biomim; 2016 Apr; 11(3):031001. PubMed ID: 27073001
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distributed flow estimation and closed-loop control of an underwater vehicle with a multi-modal artificial lateral line.
    DeVries L; Lagor FD; Lei H; Tan X; Paley DA
    Bioinspir Biomim; 2015 Mar; 10(2):025002. PubMed ID: 25807584
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A bio-inspired real-time capable artificial lateral line system for freestream flow measurements.
    Abels C; Qualtieri A; De Vittorio M; Megill WM; Rizzi F
    Bioinspir Biomim; 2016 Jun; 11(3):035006. PubMed ID: 27257144
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A multi-body dynamics based numerical modelling tool for solving aquatic biomimetic problems.
    Li R; Xiao Q; Liu Y; Hu J; Li L; Li G; Liu H; Hu K; Wen L
    Bioinspir Biomim; 2018 Jul; 13(5):056001. PubMed ID: 29916395
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bio-inspired all-optical artificial neuromast for 2D flow sensing.
    Wolf BJ; Morton JAS; MacPherson WN; van Netten SM
    Bioinspir Biomim; 2018 Feb; 13(2):026013. PubMed ID: 29334081
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Constriction canal assisted artificial lateral line system for enhanced hydrodynamic pressure sensing.
    Ma Z; Jiang Y; Wu P; Xu Y; Hu X; Gong Z; Zhang D
    Bioinspir Biomim; 2019 Sep; 14(6):066004. PubMed ID: 31434068
    [TBL] [Abstract][Full Text] [Related]  

  • 12. μ-Biomimetic flow-sensors--introducing light-guiding PDMS structures into MEMS.
    Herzog H; Klein A; Bleckmann H; Holik P; Schmitz S; Siebke G; Tätzner S; Lacher M; Steltenkamp S
    Bioinspir Biomim; 2015 Apr; 10(3):036001. PubMed ID: 25879762
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MEMS sensors for assessing flow-related control of an underwater biomimetic robotic stingray.
    Asadnia M; Kottapalli AG; Haghighi R; Cloitre A; Alvarado PV; Miao J; Triantafyllou M
    Bioinspir Biomim; 2015 May; 10(3):036008. PubMed ID: 25984934
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crocodile-inspired dome-shaped pressure receptors for passive hydrodynamic sensing.
    Kanhere E; Wang N; Kottapalli AG; Asadnia M; Subramaniam V; Miao J; Triantafyllou M
    Bioinspir Biomim; 2016 Aug; 11(5):056007. PubMed ID: 27545614
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of seal whisker morphology: implications for whisker-inspired flow control applications.
    Rinehart A; Shyam V; Zhang W
    Bioinspir Biomim; 2017 Oct; 12(6):066005. PubMed ID: 28840853
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tunas as a high-performance fish platform for inspiring the next generation of autonomous underwater vehicles.
    Wainwright DK; Lauder GV
    Bioinspir Biomim; 2020 Mar; 15(3):035007. PubMed ID: 32053798
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolutionary multiobjective design of a flexible caudal fin for robotic fish.
    Clark AJ; Tan X; McKinley PK
    Bioinspir Biomim; 2015 Nov; 10(6):065006. PubMed ID: 26601975
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Drag force acting on a neuromast in the fish lateral line trunk canal. I. Numerical modelling of external-internal flow coupling.
    Barbier C; Humphrey JA
    J R Soc Interface; 2009 Jul; 6(36):627-40. PubMed ID: 18926967
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advantages of aquatic animals as models for bio-inspired drones over present AUV technology.
    Fish FE
    Bioinspir Biomim; 2020 Feb; 15(2):025001. PubMed ID: 31751980
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomechanical model of batoid (skates and rays) pectoral fins predicts the influence of skeletal structure on fin kinematics: implications for bio-inspired design.
    Russo RS; Blemker SS; Fish FE; Bart-Smith H
    Bioinspir Biomim; 2015 Jun; 10(4):046002. PubMed ID: 26079094
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.