These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Hydrolysis of lignocellulose by anaerobic fungi produces free sugars and organic acids for two-stage fine chemical production with Kluyveromyces marxianus. Hillman ET; Li M; Hooker CA; Englaender JA; Wheeldon I; Solomon KV Biotechnol Prog; 2021 Sep; 37(5):e3172. PubMed ID: 33960738 [TBL] [Abstract][Full Text] [Related]
6. Top-Down Enrichment Guides in Formation of Synthetic Microbial Consortia for Biomass Degradation. Gilmore SP; Lankiewicz TS; Wilken SE; Brown JL; Sexton JA; Henske JK; Theodorou MK; Valentine DL; O'Malley MA ACS Synth Biol; 2019 Sep; 8(9):2174-2185. PubMed ID: 31461261 [TBL] [Abstract][Full Text] [Related]
7. Characterization of four endophytic fungi as potential consolidated bioprocessing hosts for conversion of lignocellulose into advanced biofuels. Wu W; Davis RW; Tran-Gyamfi MB; Kuo A; LaButti K; Mihaltcheva S; Hundley H; Chovatia M; Lindquist E; Barry K; Grigoriev IV; Henrissat B; Gladden JM Appl Microbiol Biotechnol; 2017 Mar; 101(6):2603-2618. PubMed ID: 28078400 [TBL] [Abstract][Full Text] [Related]
8. Comparative metagenomic analysis of microcosm structures and lignocellulolytic enzyme systems of symbiotic biomass-degrading consortia. Wongwilaiwalin S; Laothanachareon T; Mhuantong W; Tangphatsornruang S; Eurwilaichitr L; Igarashi Y; Champreda V Appl Microbiol Biotechnol; 2013 Oct; 97(20):8941-54. PubMed ID: 23381385 [TBL] [Abstract][Full Text] [Related]
9. Non-destructive quantification of anaerobic gut fungi and methanogens in co-culture reveals increased fungal growth rate and changes in metabolic flux relative to mono-culture. Leggieri PA; Kerdman-Andrade C; Lankiewicz TS; Valentine MT; O'Malley MA Microb Cell Fact; 2021 Oct; 20(1):199. PubMed ID: 34663313 [TBL] [Abstract][Full Text] [Related]
10. "Candidatus Paraporphyromonas polyenzymogenes" encodes multi-modular cellulases linked to the type IX secretion system. Naas AE; Solden LM; Norbeck AD; Brewer H; Hagen LH; Heggenes IM; McHardy AC; Mackie RI; Paša-Tolić L; Arntzen MØ; Eijsink VGH; Koropatkin NM; Hess M; Wrighton KC; Pope PB Microbiome; 2018 Mar; 6(1):44. PubMed ID: 29490697 [TBL] [Abstract][Full Text] [Related]
11. Transcriptomic and proteomic analyses of core metabolism in Clostridium termitidis CT1112 during growth on α-cellulose, xylan, cellobiose and xylose. Munir RI; Spicer V; Krokhin OV; Shamshurin D; Zhang X; Taillefer M; Blunt W; Cicek N; Sparling R; Levin DB BMC Microbiol; 2016 May; 16():91. PubMed ID: 27215540 [TBL] [Abstract][Full Text] [Related]
12. Mapping the membrane proteome of anaerobic gut fungi identifies a wealth of carbohydrate binding proteins and transporters. Seppälä S; Solomon KV; Gilmore SP; Henske JK; O'Malley MA Microb Cell Fact; 2016 Dec; 15(1):212. PubMed ID: 27998268 [TBL] [Abstract][Full Text] [Related]
13. A minimal set of bacterial cellulases for consolidated bioprocessing of lignocellulose. Liao H; Zhang XZ; Rollin JA; Zhang YH Biotechnol J; 2011 Nov; 6(11):1409-18. PubMed ID: 21751395 [TBL] [Abstract][Full Text] [Related]
14. Physiochemical and Thermodynamic Characterization of Highly Active Mutated Aspergillus niger β-glucosidase for Lignocellulose Hydrolysis. Javed MR; Rashid MH; Riaz M; Nadeem H; Qasim M; Ashiq N Protein Pept Lett; 2018; 25(2):208-219. PubMed ID: 29384047 [TBL] [Abstract][Full Text] [Related]
15. Genomic and functional analyses of fungal and bacterial consortia that enable lignocellulose breakdown in goat gut microbiomes. Peng X; Wilken SE; Lankiewicz TS; Gilmore SP; Brown JL; Henske JK; Swift CL; Salamov A; Barry K; Grigoriev IV; Theodorou MK; Valentine DL; O'Malley MA Nat Microbiol; 2021 Apr; 6(4):499-511. PubMed ID: 33526884 [TBL] [Abstract][Full Text] [Related]
16. Reactor design for minimizing product inhibition during enzymatic lignocellulose hydrolysis: I. Significance and mechanism of cellobiose and glucose inhibition on cellulolytic enzymes. Andrić P; Meyer AS; Jensen PA; Dam-Johansen K Biotechnol Adv; 2010; 28(3):308-24. PubMed ID: 20080173 [TBL] [Abstract][Full Text] [Related]
17. Community structure and fibrolytic activities of anaerobic rumen fungi in dromedary camels. Rabee AE; Forster RJ; Elekwachi CO; Kewan KZ; Sabra EA; Shawket SM; Mahrous HA; Khamiss OA J Basic Microbiol; 2019 Jan; 59(1):101-110. PubMed ID: 30303547 [TBL] [Abstract][Full Text] [Related]
18. Citrobacter freundii as a test platform for recombinant cellulose degradation systems. Lakhundi SS; Duedu KO; Cain N; Nagy R; Krakowiak J; French CE Lett Appl Microbiol; 2017 Jan; 64(1):35-42. PubMed ID: 27617802 [TBL] [Abstract][Full Text] [Related]
19. Expression of a Cellobiose Phosphorylase from Thermotoga maritima in Caldicellulosiruptor bescii Improves the Phosphorolytic Pathway and Results in a Dramatic Increase in Cellulolytic Activity. Kim SK; Himmel ME; Bomble YJ; Westpheling J Appl Environ Microbiol; 2018 Feb; 84(3):. PubMed ID: 29101202 [TBL] [Abstract][Full Text] [Related]
20. Time dependence of enzyme synergism during the degradation of model and natural lignocellulosic substrates. Malgas S; Thoresen M; van Dyk JS; Pletschke BI Enzyme Microb Technol; 2017 Aug; 103():1-11. PubMed ID: 28554379 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]