These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 29240226)

  • 1. Engineering and cytosolic delivery of a native regulatory protein and its variants for modulation of ERK2 signaling pathway.
    Ryou JH; Sohn YK; Kim DG; Kyeong HH; Kim HS
    Biotechnol Bioeng; 2018 Apr; 115(4):839-849. PubMed ID: 29240226
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphoprotein enriched in astrocytes 15 kDa (PEA-15) reprograms growth factor signaling by inhibiting threonine phosphorylation of fibroblast receptor substrate 2alpha.
    Haling JR; Wang F; Ginsberg MH
    Mol Biol Cell; 2010 Feb; 21(4):664-73. PubMed ID: 20032303
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The anti-apoptotic protein PEA-15 is a tight binding inhibitor of ERK1 and ERK2, which blocks docking interactions at the D-recruitment site.
    Callaway K; Abramczyk O; Martin L; Dalby KN
    Biochemistry; 2007 Aug; 46(32):9187-98. PubMed ID: 17658892
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural Studies of ERK2 Protein Complexes.
    Weijman JF; Riedl SJ; Mace PD
    Methods Mol Biol; 2017; 1487():53-63. PubMed ID: 27924558
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Profound conformational changes of PED/PEA-15 in ERK2 complex revealed by NMR backbone dynamics.
    Twomey EC; Cordasco DF; Wei Y
    Biochim Biophys Acta; 2012 Dec; 1824(12):1382-93. PubMed ID: 22820249
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure of ERK2 bound to PEA-15 reveals a mechanism for rapid release of activated MAPK.
    Mace PD; Wallez Y; Egger MF; Dobaczewska MK; Robinson H; Pasquale EB; Riedl SJ
    Nat Commun; 2013; 4():1681. PubMed ID: 23575685
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PEA-15 inhibits tumor cell invasion by binding to extracellular signal-regulated kinase 1/2.
    Glading A; Koziol JA; Krueger J; Ginsberg MH
    Cancer Res; 2007 Feb; 67(4):1536-44. PubMed ID: 17308092
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantifying ERK2-protein interactions by fluorescence anisotropy: PEA-15 inhibits ERK2 by blocking the binding of DEJL domains.
    Callaway K; Rainey MA; Dalby KN
    Biochim Biophys Acta; 2005 Dec; 1754(1-2):316-23. PubMed ID: 16324895
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphorylation of phosphoprotein enriched in astrocytes (PEA-15) regulates extracellular signal-regulated kinase-dependent transcription and cell proliferation.
    Krueger J; Chou FL; Glading A; Schaefer E; Ginsberg MH
    Mol Biol Cell; 2005 Aug; 16(8):3552-61. PubMed ID: 15917297
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphoprotein enriched in astrocytes-15 kDa expression inhibits astrocyte migration by a protein kinase C delta-dependent mechanism.
    Renault-Mihara F; Beuvon F; Iturrioz X; Canton B; De Bouard S; Léonard N; Mouhamad S; Sharif A; Ramos JW; Junier MP; Chneiweiss H
    Mol Biol Cell; 2006 Dec; 17(12):5141-52. PubMed ID: 16987961
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PEA-15 C-Terminal Tail Allosterically Modulates Death-Effector Domain Conformation and Facilitates Protein-Protein Interactions.
    Crespo-Flores SL; Cabezas A; Hassan S; Wei Y
    Int J Mol Sci; 2019 Jul; 20(13):. PubMed ID: 31284641
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activated ERK2 is a monomer in vitro with or without divalent cations and when complexed to the cytoplasmic scaffold PEA-15.
    Kaoud TS; Devkota AK; Harris R; Rana MS; Abramczyk O; Warthaka M; Lee S; Girvin ME; Riggs AF; Dalby KN
    Biochemistry; 2011 May; 50(21):4568-78. PubMed ID: 21506533
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Akt down-regulates ERK1/2 nuclear localization and angiotensin II-induced cell proliferation through PEA-15.
    Gervais M; Dugourd C; Muller L; Ardidie C; Canton B; Loviconi L; Corvol P; Chneiweiss H; Monnot C
    Mol Biol Cell; 2006 Sep; 17(9):3940-51. PubMed ID: 16822839
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biochemical and biological functions of the N-terminal, noncatalytic domain of extracellular signal-regulated kinase 2.
    Eblen ST; Catling AD; Assanah MC; Weber MJ
    Mol Cell Biol; 2001 Jan; 21(1):249-59. PubMed ID: 11113199
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ERK2-binding domain is required for phosphorylation of EBITEIN1, a potential downstream interactor of ERK2.
    Miura K
    Biochem Biophys Res Commun; 2008 Oct; 375(3):367-71. PubMed ID: 18700133
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel Reporter for Faithful Monitoring of ERK2 Dynamics in Living Cells and Model Organisms.
    Sipieter F; Cappe B; Gonzalez Pisfil M; Spriet C; Bodart JF; Cailliau-Maggio K; Vandenabeele P; Héliot L; Riquet FB
    PLoS One; 2015; 10(10):e0140924. PubMed ID: 26517832
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PLD1 and ERK2 regulate cytosolic lipid droplet formation.
    Andersson L; Boström P; Ericson J; Rutberg M; Magnusson B; Marchesan D; Ruiz M; Asp L; Huang P; Frohman MA; Borén J; Olofsson SO
    J Cell Sci; 2006 Jun; 119(Pt 11):2246-57. PubMed ID: 16723731
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphorylation of the NADPH oxidase component p67(PHOX) by ERK2 and P38MAPK: selectivity of phosphorylated sites and existence of an intramolecular regulatory domain in the tetratricopeptide-rich region.
    Dang PM; Morel F; Gougerot-Pocidalo MA; El Benna J
    Biochemistry; 2003 Apr; 42(15):4520-6. PubMed ID: 12693948
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Substantial conformational change mediated by charge-triad residues of the death effector domain in protein-protein interactions.
    Twomey EC; Cordasco DF; Kozuch SD; Wei Y
    PLoS One; 2013; 8(12):e83421. PubMed ID: 24391764
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biochemical and molecular analysis of the interaction between ERK2 MAP kinase and hypoxia inducible factor-1α.
    Karapetsas A; Giannakakis A; Pavlaki M; Panayiotidis M; Sandaltzopoulos R; Galanis A
    Int J Biochem Cell Biol; 2011 Nov; 43(11):1582-90. PubMed ID: 21807114
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.