These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 29240236)
41. Longan (Dimocarpus longan Lour.) Fruit Extract Stimulates Osteoblast Differentiation via Erk1/2-Dependent RUNX2 Activation. Park S; Kim JH; Son Y; Goh SH; Oh S J Microbiol Biotechnol; 2016 Jun; 26(6):1063-6. PubMed ID: 26975768 [TBL] [Abstract][Full Text] [Related]
42. Melatonin promotes osteoblastic differentiation through the BMP/ERK/Wnt signaling pathways. Park KH; Kang JW; Lee EM; Kim JS; Rhee YH; Kim M; Jeong SJ; Park YG; Kim SH J Pineal Res; 2011 Sep; 51(2):187-94. PubMed ID: 21470302 [TBL] [Abstract][Full Text] [Related]
43. The extracellular matrix protein Edil3 stimulates osteoblast differentiation through the integrin α5β1/ERK/Runx2 pathway. Oh SH; Kim JW; Kim Y; Lee MN; Kook MS; Choi EY; Im SY; Koh JT PLoS One; 2017; 12(11):e0188749. PubMed ID: 29182679 [TBL] [Abstract][Full Text] [Related]
44. Biomimetic Composite Scaffold Containing Small Intestinal Submucosa and Mesoporous Bioactive Glass Exhibits High Osteogenic and Angiogenic Capacity. Sun T; Liu M; Yao S; Ji Y; Xiong Z; Tang K; Chen K; Yang H; Guo X Tissue Eng Part A; 2018 Jul; 24(13-14):1044-1056. PubMed ID: 29350101 [TBL] [Abstract][Full Text] [Related]
45. IL-1α induces apoptosis and inhibits the osteoblast differentiation of MC3T3-E1 cells through the JNK and p38 MAPK pathways. Guo C; Yang XG; Wang F; Ma XY Int J Mol Med; 2016 Jul; 38(1):319-27. PubMed ID: 27220839 [TBL] [Abstract][Full Text] [Related]
46. Design of novel functionalized collagen-chitosan-MBG scaffolds for enhancing osteoblast differentiation in BMSCs. Gao K; Wang X; Wang Z; He L; Lin J; Bai Z; Jiang K; Huang S; Zheng W; Liu L Biomed Mater; 2021 Nov; 16(6):. PubMed ID: 34670204 [TBL] [Abstract][Full Text] [Related]
47. Electrochemical synthesis of three-dimensional porous reduced graphene oxide film: Preparation and in vitro osteogenic activity evaluation. Tian Z; Huang L; Pei X; Chen J; Wang T; Yang T; Qin H; Sui L; Wang J Colloids Surf B Biointerfaces; 2017 Jul; 155():150-158. PubMed ID: 28419944 [TBL] [Abstract][Full Text] [Related]
48. Inhibition of adenosine monophosphate-activated protein kinase suppresses bone morphogenetic protein-2-induced mineralization of osteoblasts via Smad-independent mechanisms. Takeno A; Kanazawa I; Notsu M; Tanaka KI; Sugimoto T Endocr J; 2018 Mar; 65(3):291-298. PubMed ID: 29249772 [TBL] [Abstract][Full Text] [Related]
49. Akt activation is required for TGF-β1-induced osteoblast differentiation of MC3T3-E1 pre-osteoblasts. Suzuki E; Ochiai-Shino H; Aoki H; Onodera S; Saito A; Saito A; Azuma T PLoS One; 2014; 9(12):e112566. PubMed ID: 25470129 [TBL] [Abstract][Full Text] [Related]
50. l-Quebrachitol Promotes the Proliferation, Differentiation, and Mineralization of MC3T3-E1 Cells: Involvement of the BMP-2/Runx2/MAPK/Wnt/β-Catenin Signaling Pathway. Yodthong T; Kedjarune-Leggat U; Smythe C; Wititsuwannakul R; Pitakpornpreecha T Molecules; 2018 Nov; 23(12):. PubMed ID: 30486330 [TBL] [Abstract][Full Text] [Related]
51. Cell-type-dependent up-regulation of in vitro mineralization after overexpression of the osteoblast-specific transcription factor Runx2/Cbfal. Byers BA; Pavlath GK; Murphy TJ; Karsenty G; García AJ J Bone Miner Res; 2002 Nov; 17(11):1931-44. PubMed ID: 12412799 [TBL] [Abstract][Full Text] [Related]
52. The effects of the modulation of the fibronectin-binding capacity of fibrin by thrombin on osteoblast differentiation. Oh JH; Kim HJ; Kim TI; Baek JH; Ryoo HM; Woo KM Biomaterials; 2012 Jun; 33(16):4089-99. PubMed ID: 22386921 [TBL] [Abstract][Full Text] [Related]
53. Mineralization initiation of MC3T3-E1 preosteoblast is suppressed under simulated microgravity condition. Hu LF; Li JB; Qian AR; Wang F; Shang P Cell Biol Int; 2015 Apr; 39(4):364-72. PubMed ID: 25318973 [TBL] [Abstract][Full Text] [Related]
54. Long-term loading inhibits ERK1/2 phosphorylation and increases FGFR3 expression in MC3T3-E1 osteoblast cells. Jackson RA; Kumarasuriyar A; Nurcombe V; Cool SM J Cell Physiol; 2006 Dec; 209(3):894-904. PubMed ID: 16972271 [TBL] [Abstract][Full Text] [Related]
55. Alpha-Lipoic Acid Alleviates High-Glucose Suppressed Osteogenic Differentiation of MC3T3-E1 Cells via Antioxidant Effect and PI3K/Akt Signaling Pathway. Dong K; Hao P; Xu S; Liu S; Zhou W; Yue X; Rausch-Fan X; Liu Z Cell Physiol Biochem; 2017; 42(5):1897-1906. PubMed ID: 28772267 [TBL] [Abstract][Full Text] [Related]
56. Sphingosine-1-phosphate/S1PR2-mediated signaling triggers Smad1/5/8 phosphorylation and thereby induces Runx2 expression in osteoblasts. Higashi K; Matsuzaki E; Hashimoto Y; Takahashi-Yanaga F; Takano A; Anan H; Hirata M; Nishimura F Bone; 2016 Dec; 93():1-11. PubMed ID: 27612439 [TBL] [Abstract][Full Text] [Related]
58. The influence of novel bioactive glasses on in vitro osteoblast behavior. Foppiano S; Marshall SJ; Marshall GW; Saiz E; Tomsia AP J Biomed Mater Res A; 2004 Nov; 71(2):242-9. PubMed ID: 15372470 [TBL] [Abstract][Full Text] [Related]
59. Phosphorylation of phosvitin plays a crucial effects on the protein-induced differentiation and mineralization of osteoblastic MC3T3-E1 cells. Jie Y; Li X; Cai Z; Ma M; Jin Y; Ahn DU; Huang X Int J Biol Macromol; 2018 Oct; 118(Pt B):1848-1854. PubMed ID: 30012486 [TBL] [Abstract][Full Text] [Related]
60. A poly(glycerol sebacate)-coated mesoporous bioactive glass scaffold with adjustable mechanical strength, degradation rate, controlled-release and cell behavior for bone tissue engineering. Lin D; Yang K; Tang W; Liu Y; Yuan Y; Liu C Colloids Surf B Biointerfaces; 2015 Jul; 131():1-11. PubMed ID: 25935647 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]