These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
357 related articles for article (PubMed ID: 29240289)
21. Construction of rolling circle amplification products-based pure nucleic acid nanostructures for biomedical applications. Li C; Wang Y; Li PF; Fu Q Acta Biomater; 2023 Apr; 160():1-13. PubMed ID: 36764595 [TBL] [Abstract][Full Text] [Related]
22. Sensitive isothermal detection of nucleic-acid sequence by primer generation-rolling circle amplification. Murakami T; Sumaoka J; Komiyama M Nucleic Acids Res; 2009 Feb; 37(3):e19. PubMed ID: 19106144 [TBL] [Abstract][Full Text] [Related]
23. A rolling circle amplification-assisted DNA walker triggered by multiple DNAzyme cores for highly sensitive electrochemical biosensing. Wang S; Ji Y; Fu H; Ju H; Lei J Analyst; 2019 Jan; 144(2):691-697. PubMed ID: 30516182 [TBL] [Abstract][Full Text] [Related]
24. DNAzyme-based rolling-circle amplification DNA machine for ultrasensitive analysis of microRNA in Drosophila larva. Wen Y; Xu Y; Mao X; Wei Y; Song H; Chen N; Huang Q; Fan C; Li D Anal Chem; 2012 Sep; 84(18):7664-9. PubMed ID: 22928468 [TBL] [Abstract][Full Text] [Related]
25. Target-catalyzed hairpin structure-mediated padlock cyclization for ultrasensitive rolling circle amplification. Song H; Yang Z; Jiang M; Zhang G; Gao Y; Shen Z; Wu ZS; Lou Y Talanta; 2019 Nov; 204():29-35. PubMed ID: 31357296 [TBL] [Abstract][Full Text] [Related]
26. An electrochemical strategy with tetrahedron rolling circle amplification for ultrasensitive detection of DNA methylation. Liu H; Luo J; Fang L; Huang H; Deng J; Huang J; Zhang S; Li Y; Zheng J Biosens Bioelectron; 2018 Dec; 121():47-53. PubMed ID: 30196047 [TBL] [Abstract][Full Text] [Related]
27. Colorimetric and ultrasensitive bioassay based on a dual-amplification system using aptamer and DNAzyme. Tang L; Liu Y; Ali MM; Kang DK; Zhao W; Li J Anal Chem; 2012 Jun; 84(11):4711-7. PubMed ID: 22533853 [TBL] [Abstract][Full Text] [Related]
28. Highly sensitive detection of telomerase using a telomere-triggered isothermal exponential amplification-based DNAzyme biosensor. Zhang Y; Wang LJ; Zhang CY Chem Commun (Camb); 2014 Feb; 50(15):1909-11. PubMed ID: 24406510 [TBL] [Abstract][Full Text] [Related]
29. Determination of RNase H activity via real-time monitoring of target-triggered rolling circle amplification. Lee CY; Kang KS; Park KS; Park HG Mikrochim Acta; 2017 Dec; 185(1):53. PubMed ID: 29594533 [TBL] [Abstract][Full Text] [Related]
30. Functional Nucleic Acids for Pathogenic Bacteria Detection. Chang D; Zakaria S; Esmaeili Samani S; Chang Y; Filipe CDM; Soleymani L; Brennan JD; Liu M; Li Y Acc Chem Res; 2021 Sep; 54(18):3540-3549. PubMed ID: 34478272 [TBL] [Abstract][Full Text] [Related]
31. A simple fluorescence biosensing strategy for ultrasensitive detection of the BCR-ABL1 fusion gene based on a DNA machine and multiple primer-like rolling circle amplification. Wu H; Zhou X; Cheng W; Yuan T; Zhao M; Duan X; Ding S Analyst; 2018 Oct; 143(20):4974-4980. PubMed ID: 30225494 [TBL] [Abstract][Full Text] [Related]
32. Dual functional Phi29 DNA polymerase-triggered exponential rolling circle amplification for sequence-specific detection of target DNA embedded in long-stranded genomic DNA. Li XY; Du YC; Zhang YP; Kong DM Sci Rep; 2017 Jul; 7(1):6263. PubMed ID: 28740223 [TBL] [Abstract][Full Text] [Related]
33. Ultrasensitive electrochemical detection of avian influenza A (H7N9) virus DNA based on isothermal exponential amplification coupled with hybridization chain reaction of DNAzyme nanowires. Yu Y; Chen Z; Jian W; Sun D; Zhang B; Li X; Yao M Biosens Bioelectron; 2015 Feb; 64():566-71. PubMed ID: 25310490 [TBL] [Abstract][Full Text] [Related]
34. Preparation of DNA nanostructures with repetitive binding motifs by rolling circle amplification. Reiss E; Hölzel R; Bier FF Methods Mol Biol; 2011; 749():151-68. PubMed ID: 21674371 [TBL] [Abstract][Full Text] [Related]
35. Rolling circle amplification: applications in nanotechnology and biodetection with functional nucleic acids. Zhao W; Ali MM; Brook MA; Li Y Angew Chem Int Ed Engl; 2008; 47(34):6330-7. PubMed ID: 18680110 [TBL] [Abstract][Full Text] [Related]
36. Estimation of DNA polymerase for improvement of rolling circle amplification. Yoshimura T; Arikado S; Ohuchi S Nucleic Acids Symp Ser (Oxf); 2006; (50):303-4. PubMed ID: 17150938 [TBL] [Abstract][Full Text] [Related]
37. Triple signal amplification strategy for ultrasensitive in situ imaging of intracellular telomerase RNA. Song J; Li S; Zhou J; Yu Q; Yang XJ; Chen HY; Xu JJ Anal Chim Acta; 2023 May; 1256():341145. PubMed ID: 37037628 [TBL] [Abstract][Full Text] [Related]
38. G-quadruplex based two-stage isothermal exponential amplification reaction for label-free DNA colorimetric detection. Nie J; Zhang DW; Tie C; Zhou YL; Zhang XX Biosens Bioelectron; 2014 Jun; 56():237-42. PubMed ID: 24508547 [TBL] [Abstract][Full Text] [Related]
39. Chemiluminescence imaging for microRNA detection based on cascade exponential isothermal amplification machinery. Xu Y; Li D; Cheng W; Hu R; Sang Y; Yin Y; Ding S; Ju H Anal Chim Acta; 2016 Sep; 936():229-35. PubMed ID: 27566360 [TBL] [Abstract][Full Text] [Related]
40. Metal-ion-induced DNAzyme on magnetic beads for detection of lead(II) by using rolling circle amplification, glucose oxidase, and readout of pH changes. Tang D; Xia B; Tang Y; Zhang J; Zhou Q Mikrochim Acta; 2019 May; 186(5):318. PubMed ID: 31049691 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]