BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 29240442)

  • 1. Optical Antenna-Based Fluorescence Correlation Spectroscopy to Probe the Nanoscale Dynamics of Biological Membranes.
    Winkler PM; Regmi R; Flauraud V; Brugger J; Rigneault H; Wenger J; García-Parajo MF
    J Phys Chem Lett; 2018 Jan; 9(1):110-119. PubMed ID: 29240442
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Planar Optical Nanoantennas Resolve Cholesterol-Dependent Nanoscale Heterogeneities in the Plasma Membrane of Living Cells.
    Regmi R; Winkler PM; Flauraud V; Borgman KJE; Manzo C; Brugger J; Rigneault H; Wenger J; García-Parajo MF
    Nano Lett; 2017 Oct; 17(10):6295-6302. PubMed ID: 28926278
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transient Nanoscopic Phase Separation in Biological Lipid Membranes Resolved by Planar Plasmonic Antennas.
    Winkler PM; Regmi R; Flauraud V; Brugger J; Rigneault H; Wenger J; García-Parajo MF
    ACS Nano; 2017 Jul; 11(7):7241-7250. PubMed ID: 28696660
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detecting nanodomains in living cell membrane by fluorescence correlation spectroscopy.
    He HT; Marguet D
    Annu Rev Phys Chem; 2011; 62():417-36. PubMed ID: 21219145
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diffusion, transport, and cell membrane organization investigated by imaging fluorescence cross-correlation spectroscopy.
    Sankaran J; Manna M; Guo L; Kraut R; Wohland T
    Biophys J; 2009 Nov; 97(9):2630-9. PubMed ID: 19883607
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of lipid raft partitioning of fluorescently-tagged probes in living cells by Fluorescence Correlation Spectroscopy (FCS).
    Marquer C; Lévêque-Fort S; Potier MC
    J Vis Exp; 2012 Apr; (62):e3513. PubMed ID: 22508446
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antenna-Enhanced Fluorescence Correlation Spectroscopy Resolves Calcium-Mediated Lipid-Lipid Interactions.
    Block S; Aćimović SS; Odebo Länk N; Käll M; Höök F
    ACS Nano; 2018 Apr; 12(4):3272-3279. PubMed ID: 29529368
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanoscale fluorescence correlation spectroscopy on intact living cell membranes with NSOM probes.
    Manzo C; van Zanten TS; Garcia-Parajo MF
    Biophys J; 2011 Jan; 100(2):L8-10. PubMed ID: 21244822
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoscopic substructures of raft-mimetic liquid-ordered membrane domains revealed by high-speed single-particle tracking.
    Wu HM; Lin YH; Yen TC; Hsieh CL
    Sci Rep; 2016 Feb; 6():20542. PubMed ID: 26861908
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of Lipid and Cell Membrane Organization by the Fluorescence Correlation Spectroscopy Diffusion Law.
    Ng XW; Bag N; Wohland T
    Chimia (Aarau); 2015; 69(3):112-9. PubMed ID: 26507213
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A user's guide for characterizing plasma membrane subdomains in living cells by spot variation fluorescence correlation spectroscopy.
    Mailfert S; Hamon Y; Bertaux N; He HT; Marguet D
    Methods Cell Biol; 2017; 139():1-22. PubMed ID: 28215331
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanophotonic approaches for nanoscale imaging and single-molecule detection at ultrahigh concentrations.
    Mivelle M; Van Zanten TS; Manzo C; Garcia-Parajo MF
    Microsc Res Tech; 2014 Jul; 77(7):537-45. PubMed ID: 24710842
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A nanometer scale optical view on the compartmentalization of cell membranes.
    van Zanten TS; Cambi A; Garcia-Parajo MF
    Biochim Biophys Acta; 2010 Apr; 1798(4):777-87. PubMed ID: 19800861
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Actively maintained lipid nanodomains in biomembranes.
    Gómez J; Sagués F; Reigada R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Feb; 77(2 Pt 1):021907. PubMed ID: 18352051
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unraveling complex nanoscale lipid dynamics in simple model biomembranes: Insights from fluorescence correlation spectroscopy in super-resolution stimulated emission depletion mode.
    Sarangi NK; Roobala C; Basu JK
    Methods; 2018 May; 140-141():198-211. PubMed ID: 29175337
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GPI-anchored protein organization and dynamics at the cell surface.
    Saha S; Anilkumar AA; Mayor S
    J Lipid Res; 2016 Feb; 57(2):159-75. PubMed ID: 26394904
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hierarchical organization of the plasma membrane: investigations by single-molecule tracking vs. fluorescence correlation spectroscopy.
    Kusumi A; Shirai YM; Koyama-Honda I; Suzuki KG; Fujiwara TK
    FEBS Lett; 2010 May; 584(9):1814-23. PubMed ID: 20178787
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic molecular confinement in the plasma membrane by microdomains and the cytoskeleton meshwork.
    Lenne PF; Wawrezinieck L; Conchonaud F; Wurtz O; Boned A; Guo XJ; Rigneault H; He HT; Marguet D
    EMBO J; 2006 Jul; 25(14):3245-56. PubMed ID: 16858413
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lipid rafts as a membrane-organizing principle.
    Lingwood D; Simons K
    Science; 2010 Jan; 327(5961):46-50. PubMed ID: 20044567
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shedding light on membrane rafts structure and dynamics in living cells.
    Nieto-Garai JA; Lorizate M; Contreras FX
    Biochim Biophys Acta Biomembr; 2022 Feb; 1864(1):183813. PubMed ID: 34748743
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.