These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 29240690)

  • 41. A Mitochondrial Transcription Termination Factor,
    Pan Z; Ren X; Zhao H; Liu L; Tan Z; Qiu F
    G3 (Bethesda); 2019 Aug; 9(8):2677-2686. PubMed ID: 31196888
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Comparison of Zn accumulation and speciation in kernels of sweetcorn and maize differing in maturity.
    Cheah ZX; Kopittke PM; Scheckel KG; Noerpel MR; Bell MJ
    Ann Bot; 2020 Jan; 125(1):185-193. PubMed ID: 31678993
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Characterization of Expression Patterns of Grapevine MicroRNA Family Members using MicroRNA Rapid Amplification of Complementary DNA Ends.
    Leng X; Fang J; Pervaiz T; Li Y; Wang X; Liu D; Zhu X; Fang J
    Plant Genome; 2015 Jul; 8(2):eplantgenome2014.10.0069. PubMed ID: 33228326
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [Identification and differential expression of miRNA related to seed dormancy of Paris polyphylla var. chinensis].
    Zhang CC; Wang HJ; Liang HH; Gao Z; Luo LN; He C; Xiang ZX
    Zhongguo Zhong Yao Za Zhi; 2020 Dec; 45(24):5958-5966. PubMed ID: 33496135
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Small RNA sequencing identifies miRNA roles in ovule and fibre development.
    Xie F; Jones DC; Wang Q; Sun R; Zhang B
    Plant Biotechnol J; 2015 Apr; 13(3):355-69. PubMed ID: 25572837
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Identification and characterization of microRNAs from Chinese pollination constant non-astringent persimmon using high-throughput sequencing.
    Luo Y; Zhang X; Luo Z; Zhang Q; Liu J
    BMC Plant Biol; 2015 Jan; 15():11. PubMed ID: 25604351
    [TBL] [Abstract][Full Text] [Related]  

  • 47. RNA-Seq analysis of laser-capture microdissected cells of the developing central starchy endosperm of maize.
    Thakare D; Yang R; Steffen JG; Zhan J; Wang D; Clark RM; Wang X; Yadegari R
    Genom Data; 2014 Dec; 2():242-5. PubMed ID: 26484101
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Genome-wide screen of genes imprinted in sorghum endosperm, and the roles of allelic differential cytosine methylation.
    Zhang M; Li N; He W; Zhang H; Yang W; Liu B
    Plant J; 2016 Feb; 85(3):424-36. PubMed ID: 26718755
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Genome-wide identification and analysis of microRNA responding to long-term waterlogging in crown roots of maize seedlings.
    Zhai L; Liu Z; Zou X; Jiang Y; Qiu F; Zheng Y; Zhang Z
    Physiol Plant; 2013 Feb; 147(2):181-93. PubMed ID: 22607471
    [TBL] [Abstract][Full Text] [Related]  

  • 50. High-throughput mRNA and miRNA profiling of epithelial-mesenchymal transition in MDCK cells.
    Shukla P; Vogl C; Wallner B; Rigler D; Müller M; Macho-Maschler S
    BMC Genomics; 2015 Nov; 16():944. PubMed ID: 26572553
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A putative plant organelle RNA recognition protein gene is essential for maize kernel development.
    Chettoor AM; Yi G; Gomez E; Hueros G; Meeley RB; Becraft PW
    J Integr Plant Biol; 2015 Mar; 57(3):236-46. PubMed ID: 24985738
    [TBL] [Abstract][Full Text] [Related]  

  • 52. miR169o and ZmNF-YA13 act in concert to coordinate the expression of ZmYUC1 that determines seed size and weight in maize kernels.
    Zhang M; Zheng H; Jin L; Xing L; Zou J; Zhang L; Liu C; Chu J; Xu M; Wang L
    New Phytol; 2022 Sep; 235(6):2270-2284. PubMed ID: 35713356
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Exploring Heat-Response Mechanisms of MicroRNAs Based on Microarray Data of Rice Post-meiosis Panicle.
    Peng Y; Zhang X; Liu Y; Chen X
    Int J Genomics; 2020; 2020():7582612. PubMed ID: 33015150
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Maize kernel development.
    Dai D; Ma Z; Song R
    Mol Breed; 2021 Jan; 41(1):2. PubMed ID: 37309525
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Acetolactate Synthase Activity in Developing Maize (Zea mays L.) Kernels.
    Muhitch MJ
    Plant Physiol; 1988 Jan; 86(1):23-7. PubMed ID: 16665871
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Abscisic Acid inhibition of endosperm cell division in cultured maize kernels.
    Myers PN; Setter TL; Madison JT; Thompson JF
    Plant Physiol; 1990 Nov; 94(3):1330-6. PubMed ID: 16667837
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Transcriptome profiling provides insights into the molecular mechanisms of maize kernel and silk development.
    Li T; Wang Y; Shi Y; Gou X; Yang B; Qu J; Zhang X; Xue J; Xu S
    BMC Genom Data; 2021 Aug; 22(1):28. PubMed ID: 34418952
    [TBL] [Abstract][Full Text] [Related]  

  • 58. High-efficiency genetic transformation of maize by a mixture of pollen and exogenous DNA.
    Ohta Y
    Proc Natl Acad Sci U S A; 1986 Feb; 83(3):715-9. PubMed ID: 16593654
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Comprehensive Identification of the
    Feng W; Zhang H; Cao Y; Yang C; Khalid MHB; Yang Q; Li W; Wang Y; Fu F; Yu H
    Int J Mol Sci; 2023 Sep; 24(18):. PubMed ID: 37762337
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Intrusive Growth of Phloem Fibers in Flax Stem: Integrated Analysis of miRNA and mRNA Expression Profiles.
    Gorshkov O; Chernova T; Mokshina N; Gogoleva N; Suslov D; Tkachenko A; Gorshkova T
    Plants (Basel); 2019 Feb; 8(2):. PubMed ID: 30791461
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.