These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 29240690)

  • 61. Maize miRNA and target regulation in response to hormone depletion and light exposure during somatic embryogenesis.
    Chávez-Hernández EC; Alejandri-Ramírez ND; Juárez-González VT; Dinkova TD
    Front Plant Sci; 2015; 6():555. PubMed ID: 26257760
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Characterization and Transcriptome Analysis of Maize Small-Kernel Mutant
    Wang J; Wang H; Li K; Liu X; Cao X; Zhou Y; Huang C; Peng Y; Hu X
    Plants (Basel); 2023 Jan; 12(2):. PubMed ID: 36679067
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Development of Incompletely Fused Carpels in Maize Ovary Revealed by miRNA, Target Gene and Phytohormone Analysis.
    Li H; Peng T; Wang Q; Wu Y; Chang J; Zhang M; Tang G; Li C
    Front Plant Sci; 2017; 8():463. PubMed ID: 28421097
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Ethylene-Mediated Programmed Cell Death during Maize Endosperm Development of Wild-Type and shrunken2 Genotypes.
    Young TE; Gallie DR; DeMason DA
    Plant Physiol; 1997 Oct; 115(2):737-751. PubMed ID: 12223841
    [TBL] [Abstract][Full Text] [Related]  

  • 65. N6-methyladenosine transcriptome-wide profiles of maize kernel development.
    Wu JW; Zheng GM; Zhang L; Zhao YJ; Yan RY; Ren RC; Wei YM; Li KP; Zhang XS; Zhao XY
    Plant Physiol; 2024 Sep; ():. PubMed ID: 39222356
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Development of flange and reticulate wall ingrowths in maize (Zea mays L.) endosperm transfer cells.
    Monjardino P; Rocha S; Tavares AC; Fernandes R; Sampaio P; Salema R; da Câmara Machado A
    Protoplasma; 2013 Apr; 250(2):495-503. PubMed ID: 22814725
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Expression of Genes for Si Uptake, Accumulation, and Correlation of Si with Other Elements in Ionome of Maize Kernel.
    Bokor B; Ondoš S; Vaculík M; Bokorová S; Weidinger M; Lichtscheidl I; Turňa J; Lux A
    Front Plant Sci; 2017; 8():1063. PubMed ID: 28674553
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Integrated mRNA and small RNA sequencing reveals post-transcriptional regulation of the sesquiterpene pathway in
    Madhuvanthi CK; Muthulakshmi E; Ghosh Dasgupta M
    3 Biotech; 2023 Dec; 13(12):387. PubMed ID: 37942052
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Defective kernel mutants of maize. I. Genetic and lethality studies.
    Neuffer MG; Sheridan WF
    Genetics; 1980 Aug; 95(4):929-44. PubMed ID: 17249053
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Transcriptome and microRNA Sequencing Identified miRNAs and Target Genes in Different Developmental Stages of the Vascular Cambium in
    Hu H; Guo Z; Yang J; Cui J; Zhang Y; Xu J
    Front Plant Sci; 2021; 12():751771. PubMed ID: 34868137
    [No Abstract]   [Full Text] [Related]  

  • 71. Autonomous and non-autonomous functions of the maize Shohai1 gene, encoding a RWP-RK putative transcription factor, in regulation of embryo and endosperm development.
    Mimura M; Kudo T; Wu S; McCarty DR; Suzuki M
    Plant J; 2018 Jun; ():. PubMed ID: 29901832
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Sugar Uptake and Metabolism in the Developing Endosperm of Tassel-seed Tunicate (Ts-5 Tu) Maize.
    Thomas PA; Felker FC; Crawford CG
    Plant Physiol; 1992 Aug; 99(4):1540-5. PubMed ID: 16669071
    [TBL] [Abstract][Full Text] [Related]  

  • 73. MicroRNA and Putative Target Discoveries in Chrysanthemum Polyploidy Breeding.
    Zhang F; Zhao J; Xu S; Fang W; Chen F; Teng N
    Int J Genomics; 2017; 2017():6790478. PubMed ID: 29387713
    [TBL] [Abstract][Full Text] [Related]  

  • 74. A novel high-throughput hyperspectral scanner and analytical methods for predicting maize kernel composition and physical traits.
    Varela JI; Miller ND; Infante V; Kaeppler SM; de Leon N; Spalding EP
    Food Chem; 2022 Oct; 391():133264. PubMed ID: 35643019
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Defective Kernel Mutants of Maize II. Morphological and Embryo Culture Studies.
    Sheridan WF; Neuffer MG
    Genetics; 1980 Aug; 95(4):945-60. PubMed ID: 17249054
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Weighted gene co-expression network analysis unveils gene networks regulating folate biosynthesis in maize endosperm.
    Song L; Yu D; Zheng H; Wu G; Sun Y; Li P; Wang J; Wang C; Lv B; Tang X
    3 Biotech; 2021 Oct; 11(10):441. PubMed ID: 34631342
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Development of maize caryopses resulting from in-vitro pollination.
    Gengenbach BG
    Planta; 1977 Jan; 134(1):91-3. PubMed ID: 24419585
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Identification of a new mutant allele of
    Wang Y; Zhang X; Luo B; Hu H; Zhong H; Zhang H; Zhang Z; Gao J; Liu D; Wu L; Gao S; Gao D; Gao S
    Mol Breed; 2022 Feb; 42(2):7. PubMed ID: 37309320
    [TBL] [Abstract][Full Text] [Related]  

  • 79. DNA amplification patterns in maize endosperm nuclei during kernel development.
    Kowles RV; Phillips RL
    Proc Natl Acad Sci U S A; 1985 Oct; 82(20):7010-4. PubMed ID: 16593620
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Developmental expression of genetically defined peptidases in maize.
    Vodkin LO; Scandalios JG
    Plant Physiol; 1979 Jun; 63(6):1198-204. PubMed ID: 16660882
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.