These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 29240920)

  • 1. An appeal for a more evidence based approach to biopesticide safety in the EU.
    Raymond B; Federici BA
    FEMS Microbiol Ecol; 2018 Jan; 94(1):. PubMed ID: 29240920
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In defense of Bacillus thuringiensis, the safest and most successful microbial insecticide available to humanity - a response to EFSA.
    Raymond B; Federici BA
    FEMS Microbiol Ecol; 2017 Jul; 93(7):. PubMed ID: 28645183
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prevalence, attachment ability and strength of the biological control agent Bacillus thuringiensis on tomato.
    Zhao X; Hendriks M; Deleu E; Spanoghe P; Höfte M; van Overbeek L; Uyttendaele M
    Food Microbiol; 2023 Jun; 112():104235. PubMed ID: 36906306
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of the performance of multiple whole-genome sequence-based tools for the identification of
    Chung T; Salazar A; Harm G; Johler S; Carroll LM; Kovac J
    Appl Environ Microbiol; 2024 Apr; 90(4):e0177823. PubMed ID: 38470126
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Insect pathogens as biological control agents: Back to the future.
    Lacey LA; Grzywacz D; Shapiro-Ilan DI; Frutos R; Brownbridge M; Goettel MS
    J Invertebr Pathol; 2015 Nov; 132():1-41. PubMed ID: 26225455
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolation and characterization of Bacillus cereus-like bacteria from faecal samples from greenhouse workers who are using Bacillus thuringiensis-based insecticides.
    Jensen GB; Larsen P; Jacobsen BL; Madsen B; Wilcks A; Smidt L; Andrup L
    Int Arch Occup Environ Health; 2002 Mar; 75(3):191-6. PubMed ID: 11954987
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ecological consequences of ingestion of Bacillus cereus on Bacillus thuringiensis infections and on the gut flora of a lepidopteran host.
    Raymond B; Lijek RS; Griffiths RI; Bonsall MB
    J Invertebr Pathol; 2008 Sep; 99(1):103-11. PubMed ID: 18533180
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification and characterization of
    Zhao X; Zervas A; Hendriks M; Rajkovic A; van Overbeek L; Hendriksen NB; Uyttendaele M
    Front Microbiol; 2022; 13():1030921. PubMed ID: 36569082
    [No Abstract]   [Full Text] [Related]  

  • 9. Environmental factors determining the epidemiology and population genetic structure of the Bacillus cereus group in the field.
    Raymond B; Wyres KL; Sheppard SK; Ellis RJ; Bonsall MB
    PLoS Pathog; 2010 May; 6(5):e1000905. PubMed ID: 20502683
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent paradigm shifts in the perception of the role of Bacillus thuringiensis in foodborne disease.
    Biggel M; Jessberger N; Kovac J; Johler S
    Food Microbiol; 2022 Aug; 105():104025. PubMed ID: 35473978
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Bacillus thuringiensis kurstaki Biopesticide Does Not Reduce Hatching Success or Tadpole Survival at Environmentally Relevant Concentrations in Southern Leopard Frogs (Lithobates sphenocephalus).
    Weeks DM; Parris MJ
    Environ Toxicol Chem; 2020 Jan; 39(1):155-161. PubMed ID: 31499575
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cellular responses in Bacillus thuringiensis CS33 during bacteriophage BtCS33 infection.
    Wu D; Yuan Y; Liu P; Wu Y; Gao M
    J Proteomics; 2014 Apr; 101():192-204. PubMed ID: 24565692
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dissecting the Environmental Consequences of
    Belousova ME; Malovichko YV; Shikov AE; Nizhnikov AA; Antonets KS
    Toxins (Basel); 2021 May; 13(5):. PubMed ID: 34065665
    [No Abstract]   [Full Text] [Related]  

  • 14. Microbial biopesticides for invertebrate pests and their markets in the United States.
    Arthurs S; Dara SK
    J Invertebr Pathol; 2019 Jul; 165():13-21. PubMed ID: 29402394
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The mammalian safety of Bacillus thuringiensis-based insecticides.
    Siegel JP
    J Invertebr Pathol; 2001 Jan; 77(1):13-21. PubMed ID: 11161988
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reply to the article 'In defense of Bacillus thuringiensis, the safest and most successful microbial insecticide available to humanity-a response to EFSA'.
    Biological Hazards Panel of EFSA (collective author)
    FEMS Microbiol Ecol; 2018 Jan; 94(1):. PubMed ID: 29228258
    [No Abstract]   [Full Text] [Related]  

  • 17. Bacillus thuringiensis (Bt) transgenic crop: an environment friendly insect-pest management strategy.
    Kumar S; Chandra A; Pandey KC
    J Environ Biol; 2008 Sep; 29(5):641-53. PubMed ID: 19295059
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic manipulation in Bacillus thuringiensis for strain improvement.
    Sansinenea E; Vázquez C; Ortiz A
    Biotechnol Lett; 2010 Nov; 32(11):1549-57. PubMed ID: 20652622
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pepper growth promotion and biocontrol against
    Hernández-Huerta J; Tamez-Guerra P; Gomez-Flores R; Delgado-Gardea MCE; Robles-Hernández L; Gonzalez-Franco AC; Infante-Ramirez R
    PeerJ; 2023; 11():e14633. PubMed ID: 36710864
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Tripartite Interaction of Host Immunity-
    Li S; De Mandal S; Xu X; Jin F
    Toxins (Basel); 2020 Aug; 12(8):. PubMed ID: 32806491
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.