These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 29240951)

  • 1. Using the comet assay and lysis conditions to characterize DNA lesions from the acrylamide metabolite glycidamide.
    Hansen SH; Pawlowicz AJ; Kronberg L; Gützkow KB; Olsen AK; Brunborg G
    Mutagenesis; 2018 Feb; 33(1):31-39. PubMed ID: 29240951
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro investigations of glycidamide-induced DNA lesions in mouse male germ cells and in mouse and human lymphocytes.
    Hansen SH; Olsen AK; Søderlund EJ; Brunborg G
    Mutat Res; 2010 Feb; 696(1):55-61. PubMed ID: 20026424
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cytogenetic damage induced by acrylamide and glycidamide in mammalian cells: correlation with specific glycidamide-DNA adducts.
    Martins C; Oliveira NG; Pingarilho M; Gamboa da Costa G; Martins V; Marques MM; Beland FA; Churchwell MI; Doerge DR; Rueff J; Gaspar JF
    Toxicol Sci; 2007 Feb; 95(2):383-90. PubMed ID: 17088317
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genotoxicity of glycidamide in comparison to 3-N-nitroso-oxazolidin-2-one.
    Baum M; Loeppky RN; Thielen S; Eisenbrand G
    J Agric Food Chem; 2008 Aug; 56(15):5989-93. PubMed ID: 18624445
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DNA damage and DNA adduct formation in rat tissues following oral administration of acrylamide.
    Manière I; Godard T; Doerge DR; Churchwell MI; Guffroy M; Laurentie M; Poul JM
    Mutat Res; 2005 Feb; 580(1-2):119-29. PubMed ID: 15668114
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA adduct formation from acrylamide via conversion to glycidamide in adult and neonatal mice.
    Gamboa da Costa G; Churchwell MI; Hamilton LP; Von Tungeln LS; Beland FA; Marques MM; Doerge DR
    Chem Res Toxicol; 2003 Oct; 16(10):1328-37. PubMed ID: 14565774
    [TBL] [Abstract][Full Text] [Related]  

  • 7. hOGG1 recognizes oxidative damage using the comet assay with greater specificity than FPG or ENDOIII.
    Smith CC; O'Donovan MR; Martin EA
    Mutagenesis; 2006 May; 21(3):185-90. PubMed ID: 16597659
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Searching for assay controls for the Fpg- and hOGG1-modified comet assay.
    Møller P; Jantzen K; Løhr M; Andersen MH; Jensen DM; Roursgaard M; Danielsen PH; Jensen A; Loft S
    Mutagenesis; 2018 Feb; 33(1):9-19. PubMed ID: 28992346
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Further characterization of benzo[a]pyrene diol-epoxide (BPDE)-induced comet assay effects.
    Bausinger J; Schütz P; Piberger AL; Speit G
    Mutagenesis; 2016 Mar; 31(2):161-9. PubMed ID: 26346062
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genotoxicity of acrylamide in human lymphocytes.
    Blasiak J; Gloc E; Wozniak K; Czechowska A
    Chem Biol Interact; 2004 Oct; 149(2-3):137-49. PubMed ID: 15501435
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancing the sensitivity of the comet assay as a genotoxicity test, by combining it with bacterial repair enzyme FPG.
    Azqueta A; Arbillaga L; López de Cerain A; Collins A
    Mutagenesis; 2013 May; 28(3):271-7. PubMed ID: 23448901
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Does the duration of lysis affect the sensitivity of the in vitro alkaline comet assay?
    Enciso JM; Sánchez O; López de Cerain A; Azqueta A
    Mutagenesis; 2015 Jan; 30(1):21-8. PubMed ID: 25527724
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genotoxicity of glycidamide in comparison to (+/-)-anti-benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide and alpha-acetoxy-N-nitroso-diethanolamine in human blood and in mammalian V79-cells.
    Thielen S; Baum M; Hoffmann M; Loeppky RN; Eisenbrand G
    Mol Nutr Food Res; 2006 Apr; 50(4-5):430-6. PubMed ID: 16598810
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genotoxic effects of acrylamide and glycidamide in mouse lymphoma cells.
    Mei N; Hu J; Churchwell MI; Guo L; Moore MM; Doerge DR; Chen T
    Food Chem Toxicol; 2008 Feb; 46(2):628-36. PubMed ID: 18029077
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNA strand breaking capacity of acrylamide and glycidamide in mammalian cells.
    Puppel N; Tjaden Z; Fueller F; Marko D
    Mutat Res; 2005 Feb; 580(1-2):71-80. PubMed ID: 15668109
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel approach for the detection of alkylated bases using the enzyme-modified comet assay.
    Muruzabal D; Sanz-Serrano J; Sauvaigo S; Gützkow KB; López de Cerain A; Vettorazzi A; Azqueta A
    Toxicol Lett; 2020 May; 330():108-117. PubMed ID: 32380118
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sensitivity of the FPG protein towards alkylation damage in the comet assay.
    Speit G; Schütz P; Bonzheim I; Trenz K; Hoffmann H
    Toxicol Lett; 2004 Jan; 146(2):151-8. PubMed ID: 14643967
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genotoxicity of acrylamide and glycidamide in human lymphoblastoid TK6 cells.
    Koyama N; Sakamoto H; Sakuraba M; Koizumi T; Takashima Y; Hayashi M; Matsufuji H; Yamagata K; Masuda S; Kinae N; Honma M
    Mutat Res; 2006 Feb; 603(2):151-8. PubMed ID: 16387526
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The DNA-damaging potential of tamoxifen in breast cancer and normal cells.
    Wozniak K; Kolacinska A; Blasinska-Morawiec M; Morawiec-Bajda A; Morawiec Z; Zadrozny M; Blasiak J
    Arch Toxicol; 2007 Jul; 81(7):519-27. PubMed ID: 17593413
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acrylamide and glycidamide: genotoxic effects in V79-cells and human blood.
    Baum M; Fauth E; Fritzen S; Herrmann A; Mertes P; Merz K; Rudolphi M; Zankl H; Eisenbrand G
    Mutat Res; 2005 Feb; 580(1-2):61-9. PubMed ID: 15668108
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.