BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 29241075)

  • 1. Assessment of arsenic oxidation potential of Microvirga indica S-MI1b sp. nov. in heavy metal polluted environment.
    Tapase SR; Kodam KM
    Chemosphere; 2018 Mar; 195():1-10. PubMed ID: 29241075
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Arsenic accumulating and transforming bacteria isolated from contaminated soil for potential use in bioremediation.
    Banerjee S; Datta S; Chattyopadhyay D; Sarkar P
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2011; 46(14):1736-47. PubMed ID: 22175878
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetics of arsenite oxidation by Variovorax sp. MM-1 isolated from a soil and identification of arsenite oxidase gene.
    Bahar MM; Megharaj M; Naidu R
    J Hazard Mater; 2013 Nov; 262():997-1003. PubMed ID: 23290483
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isolation and characterization of yeasts associated with plants growing in heavy-metal- and arsenic-contaminated soils.
    Ramos-Garza J; Bustamante-Brito R; Ángeles de Paz G; Medina-Canales MG; Vásquez-Murrieta MS; Wang ET; Rodríguez-Tovar AV
    Can J Microbiol; 2016 Apr; 62(4):307-19. PubMed ID: 26936448
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved grain yield and lowered arsenic accumulation in rice plants by inoculation with arsenite-oxidizing Achromobacter xylosoxidans GD03.
    Wang K; Li Y; Wu Y; Qiu Z; Ding Z; Wang X; Chen W; Wang R; Fu F; Rensing C; Yang G
    Ecotoxicol Environ Saf; 2020 Dec; 206():111229. PubMed ID: 32889310
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of arsenic on the biofilm formations of arsenite-oxidizing bacteria.
    Zeng XC; He Z; Chen X; Cao QAD; Li H; Wang Y
    Ecotoxicol Environ Saf; 2018 Dec; 165():1-10. PubMed ID: 30173020
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arsenic redox transformation by Pseudomonas sp. HN-2 isolated from arsenic-contaminated soil in Hunan, China.
    Zhang Z; Yin N; Cai X; Wang Z; Cui Y
    J Environ Sci (China); 2016 Sep; 47():165-173. PubMed ID: 27593283
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arsenic bioremediation potential of a new arsenite-oxidizing bacterium Stenotrophomonas sp. MM-7 isolated from soil.
    Bahar MM; Megharaj M; Naidu R
    Biodegradation; 2012 Nov; 23(6):803-12. PubMed ID: 22760225
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidation of arsenite by two β-proteobacteria isolated from soil.
    Bachate SP; Khapare RM; Kodam KM
    Appl Microbiol Biotechnol; 2012 Mar; 93(5):2135-45. PubMed ID: 21983709
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arsenic biotransformation potential of microbial arsH responses in the biogeochemical cycling of arsenic-contaminated groundwater.
    Chang JS; Yoon IH; Kim KW
    Chemosphere; 2018 Jan; 191():729-737. PubMed ID: 29080535
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of heavy metals on growth and arsenic accumulation in the arsenic hyperaccumulator Pteris vittata L.
    Fayiga AO; Ma LQ; Cao X; Rathinasabapathi B
    Environ Pollut; 2004 Nov; 132(2):289-96. PubMed ID: 15312941
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of arsenite-oxidizing bacteria isolated from arsenic-contaminated groundwater of West Bengal.
    Paul D; Poddar S; Sar P
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2014; 49(13):1481-92. PubMed ID: 25137536
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of the antimonite- and arsenite-oxidizing bacterium Bosea sp. AS-1 and its potential application in arsenic removal.
    Lu X; Zhang Y; Liu C; Wu M; Wang H
    J Hazard Mater; 2018 Oct; 359():527-534. PubMed ID: 30086523
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arsenite oxidation by a facultative chemolithoautotrophic Sinorhizobium sp. KGO-5 isolated from arsenic-contaminated soil.
    Dong D; Ohtsuka T; Dong DT; Amachi S
    Biosci Biotechnol Biochem; 2014; 78(11):1963-70. PubMed ID: 25051896
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arsenic detoxification potential of aox genes in arsenite-oxidizing bacteria isolated from natural and constructed wetlands in the Republic of Korea.
    Chang JS; Yoon IH; Lee JH; Kim KR; An J; Kim KW
    Environ Geochem Health; 2010 Apr; 32(2):95-105. PubMed ID: 19548094
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The fate of arsenic adsorbed on iron oxides in the presence of arsenite-oxidizing bacteria.
    Zhang Z; Yin N; Du H; Cai X; Cui Y
    Chemosphere; 2016 May; 151():108-15. PubMed ID: 26933901
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection, diversity and expression of aerobic bacterial arsenite oxidase genes.
    Inskeep WP; Macur RE; Hamamura N; Warelow TP; Ward SA; Santini JM
    Environ Microbiol; 2007 Apr; 9(4):934-43. PubMed ID: 17359265
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New clusters of arsenite oxidase and unusual bacterial groups in enrichments from arsenic-contaminated soil.
    Sultana M; Vogler S; Zargar K; Schmidt AC; Saltikov C; Seifert J; Schlömann M
    Arch Microbiol; 2012 Jul; 194(7):623-35. PubMed ID: 22350109
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sedimentary arsenite-oxidizing and arsenate-reducing bacteria associated with high arsenic groundwater from Shanyin, Northwestern China.
    Fan H; Su C; Wang Y; Yao J; Zhao K; Wang Y; Wang G
    J Appl Microbiol; 2008 Aug; 105(2):529-39. PubMed ID: 18397256
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of phosphate on toxicity and bioaccumulation of arsenic in a soil isolate of microalga Chlorella sp.
    Bahar MM; Megharaj M; Naidu R
    Environ Sci Pollut Res Int; 2016 Feb; 23(3):2663-8. PubMed ID: 26438364
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.