These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 29241137)

  • 1. Improving post-detonation energetics residues estimations for the Life Cycle Environmental Assessment process for munitions.
    Walsh M; Gullett B; Walsh M; Bigl M; Aurell J
    Chemosphere; 2018 Mar; 194():622-627. PubMed ID: 29241137
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RDX and TNT residues from live-fire and blow-in-place detonations.
    Hewitt AD; Jenkins TF; Walsh ME; Walsh MR; Taylor S
    Chemosphere; 2005 Nov; 61(6):888-94. PubMed ID: 15964048
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aerostat-based sampling of emissions from open burning and open detonation of military ordnance.
    Aurell J; Gullett BK; Tabor D; Williams RK; Mitchell W; Kemme MR
    J Hazard Mater; 2015 Mar; 284():108-20. PubMed ID: 25463224
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Perchlorate contamination from the detonation of insensitive high-explosive rounds.
    Walsh MR; Walsh ME; Ramsey CA; Brochu S; Thiboutot S; Ampleman G
    J Hazard Mater; 2013 Nov; 262():228-33. PubMed ID: 24035798
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Explosive particle soil surface dispersion model for detonated military munitions.
    Hathaway JE; Rishel JP; Walsh ME; Walsh MR; Taylor S
    Environ Monit Assess; 2015 Jul; 187(7):415. PubMed ID: 26050065
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characteristics of Composition B particles from blow-in-place detonations.
    Taylor S; Campbell E; Perovich L; Lever J; Pennington J
    Chemosphere; 2006 Nov; 65(8):1405-13. PubMed ID: 16750241
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transport of insensitive munitions constituents, NTO, DNAN, RDX, and HMX in runoff and sediment under simulated rainfall.
    Polyakov V; Kadoya W; Beal S; Morehead H; Hunt E; Cubello F; Meding SM; Dontsova K
    Sci Total Environ; 2023 Mar; 866():161434. PubMed ID: 36623648
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of hazardous air pollutants from disposal of munitions in a prototype fluidized bed incinerator.
    Carroll JW; Guinivan TL; Tuggle RM; Williams KE; Lillian DL
    Am Ind Hyg Assoc J; 1979 Feb; 40(2):147-58. PubMed ID: 495446
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toxicity of the conventional energetics TNT and RDX relative to new insensitive munitions constituents DNAN and NTO in Rana pipiens tadpoles.
    Stanley JK; Lotufo GR; Biedenbach JM; Chappell P; Gust KA
    Environ Toxicol Chem; 2015 Apr; 34(4):873-9. PubMed ID: 25586961
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A morphological investigation of soot produced by the detonation of munitions.
    Pantea D; Brochu S; Thiboutot S; Ampleman G; Scholz G
    Chemosphere; 2006 Oct; 65(5):821-31. PubMed ID: 16674994
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Including impacts of particulate emissions on marine ecosystems in life cycle assessment: the case of offshore oil and gas production.
    Veltman K; Huijbregts MA; Rye H; Hertwich EG
    Integr Environ Assess Manag; 2011 Oct; 7(4):678-86. PubMed ID: 21735543
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Life cycle impact assessment modeling for particulate matter: A new approach based on physico-chemical particle properties.
    Notter DA
    Environ Int; 2015 Sep; 82():10-20. PubMed ID: 26001495
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sea-dumped chemical weapons: environmental risk, occupational hazard.
    Greenberg MI; Sexton KJ; Vearrier D
    Clin Toxicol (Phila); 2016; 54(2):79-91. PubMed ID: 26692048
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Environmental impacts of training activities at an air weapons range.
    Bordeleau G; Martel R; Ampleman G; Thiboutot S
    J Environ Qual; 2008; 37(2):308-17. PubMed ID: 18268292
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dissolution and transport of insensitive munitions formulations IMX-101 and IMX-104 in saturated soil columns.
    Arthur JD; Mark NW; Taylor S; Šimůnek J; Brusseau ML; Dontsova KM
    Sci Total Environ; 2018 May; 624():758-768. PubMed ID: 29272845
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characteristics of Particulate Matter and Volatile Organic Compound Emissions from the Combustion of Waste Vinyl.
    Barabad MLM; Jung W; Versoza ME; Lee YI; Choi K; Park D
    Int J Environ Res Public Health; 2018 Jul; 15(7):. PubMed ID: 30004455
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Outdoor dissolution of detonation residues of three insensitive munitions (IM) formulations.
    Taylor S; Dontsova K; Walsh ME; Walsh MR
    Chemosphere; 2015 Sep; 134():250-6. PubMed ID: 25966455
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Common explosives (TNT, RDX, HMX) and their fate in the environment: Emphasizing bioremediation.
    Chatterjee S; Deb U; Datta S; Walther C; Gupta DK
    Chemosphere; 2017 Oct; 184():438-451. PubMed ID: 28618276
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Production of particulate Composition B during simulated weathering of larger detonation residues.
    Fuller ME; Schaefer CE; Andaya C; Fallis S
    J Hazard Mater; 2015; 283():1-6. PubMed ID: 25262478
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Review of nanomaterial aging and transformations through the life cycle of nano-enhanced products.
    Mitrano DM; Motellier S; Clavaguera S; Nowack B
    Environ Int; 2015 Apr; 77():132-47. PubMed ID: 25705000
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.