These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 29241153)

  • 1. Electroactive microorganisms and microbial consortia.
    Marsili E; Freguia S
    Bioelectrochemistry; 2018 Apr; 120():110-111. PubMed ID: 29241153
    [No Abstract]   [Full Text] [Related]  

  • 2. Specific and efficient electrochemical selection of Geoalkalibacter subterraneus and Desulfuromonas acetoxidans in high current-producing biofilms.
    Pierra M; Carmona-Martínez AA; Trably E; Godon JJ; Bernet N
    Bioelectrochemistry; 2015 Dec; 106(Pt A):221-5. PubMed ID: 25717030
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly active bidirectional electron transfer by a self-assembled electroactive reduced-graphene-oxide-hybridized biofilm.
    Yong YC; Yu YY; Zhang X; Song H
    Angew Chem Int Ed Engl; 2014 Apr; 53(17):4480-3. PubMed ID: 24644059
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microbial Interactions in Electroactive Biofilms for Environmental Engineering Applications: A Role for Nonexoelectrogens.
    Fessler M; Madsen JS; Zhang Y
    Environ Sci Technol; 2022 Nov; 56(22):15273-15279. PubMed ID: 36223388
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microbial electrochemical technologies: Electronic circuitry and characterization tools.
    Sánchez C; Dessì P; Duffy M; Lens PNL
    Biosens Bioelectron; 2020 Feb; 150():111884. PubMed ID: 31780409
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strategies for improving the electroactivity and specific metabolic functionality of microorganisms for various microbial electrochemical technologies.
    Chiranjeevi P; Patil SA
    Biotechnol Adv; 2020; 39():107468. PubMed ID: 31707076
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioelectricity production from microbial fuel cell using mixed bacterial culture isolated from distillery wastewater.
    Samsudeen N; Radhakrishnan TK; Matheswaran M
    Bioresour Technol; 2015 Nov; 195():242-7. PubMed ID: 26212679
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Overview of electroactive microorganisms and electron transfer mechanisms in microbial electrochemistry.
    Thapa BS; Kim T; Pandit S; Song YE; Afsharian YP; Rahimnejad M; Kim JR; Oh SE
    Bioresour Technol; 2022 Mar; 347():126579. PubMed ID: 34921921
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioelectrochemical remediation of phenanthrene in a microbial fuel cell using an anaerobic consortium enriched from a hydrocarbon-contaminated site.
    Sharma M; Nandy A; Taylor N; Venkatesan SV; Ozhukil Kollath V; Karan K; Thangadurai V; Tsesmetzis N; Gieg LM
    J Hazard Mater; 2020 May; 389():121845. PubMed ID: 31862354
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biodegradation of surrogate naphthenic acids and electricity generation in microbial fuel cells: bioelectrochemical and microbial characterizations.
    Valdes Labrada GM; Nemati M
    Bioprocess Biosyst Eng; 2018 Nov; 41(11):1635-1649. PubMed ID: 30046898
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High throughput techniques for the rapid identification of electroactive microorganisms.
    Nath D; Das S; Ghangrekar MM
    Chemosphere; 2021 Dec; 285():131489. PubMed ID: 34265713
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanoliter scale electrochemistry of natural and engineered electroactive bacteria.
    Yates MD; Bird LJ; Eddie BJ; Onderko EL; Voigt CA; Glaven SM
    Bioelectrochemistry; 2021 Feb; 137():107644. PubMed ID: 32971484
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aerobic granular sludge inoculated microbial fuel cells for enhanced epoxy reactive diluent wastewater treatment.
    Cheng K; Hu J; Hou H; Liu B; Chen Q; Pan K; Pu W; Yang J; Wu X; Yang C
    Bioresour Technol; 2017 Apr; 229():126-133. PubMed ID: 28110229
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Waste water derived electroactive microbial biofilms: growth, maintenance, and basic characterization.
    Gimkiewicz C; Harnisch F
    J Vis Exp; 2013 Dec; (82):50800. PubMed ID: 24430581
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Maintenance of Geobacter-dominated biofilms in microbial fuel cells treating synthetic wastewater.
    Commault AS; Lear G; Weld RJ
    Bioelectrochemistry; 2015 Dec; 106(Pt A):150-8. PubMed ID: 25935865
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrochemical and microbial monitoring of multi-generational electroactive biofilms formed from mangrove sediment.
    Rivalland C; Madhkour S; Salvin P; Robert F
    Bioelectrochemistry; 2015 Dec; 106(Pt A):125-32. PubMed ID: 26055041
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Critical transport rates that limit the performance of microbial electrochemistry technologies.
    Popat SC; Torres CI
    Bioresour Technol; 2016 Sep; 215():265-273. PubMed ID: 27211921
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Challenges in microbial fuel cell development and operation.
    Kim BH; Chang IS; Gadd GM
    Appl Microbiol Biotechnol; 2007 Sep; 76(3):485-94. PubMed ID: 17593364
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The electric picnic: synergistic requirements for exoelectrogenic microbial communities.
    Kiely PD; Regan JM; Logan BE
    Curr Opin Biotechnol; 2011 Jun; 22(3):378-85. PubMed ID: 21441020
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of nitrate and sulfate on the performance and bacterial community structure of membrane-less single-chamber air-cathode microbial fuel cells.
    Seo Y; Kang H; Chang S; Lee YY; Cho KS
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2018 Jan; 53(1):13-24. PubMed ID: 29035628
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.