These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 29241293)

  • 1. In Vivo Delivery of Nanoparticles into Plant Leaves.
    Wu H; Santana I; Dansie J; Giraldo JP
    Curr Protoc Chem Biol; 2017 Dec; 9(4):269-284. PubMed ID: 29241293
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of polymeric nanoparticle formulations by effective imaging and quantitation of cellular uptake for controlled delivery of doxorubicin.
    Win KY; Teng CP; Ye E; Low M; Han MY
    Small; 2015 Mar; 11(9-10):1197-204. PubMed ID: 25400129
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeted delivery of nanomaterials with chemical cargoes in plants enabled by a biorecognition motif.
    Santana I; Wu H; Hu P; Giraldo JP
    Nat Commun; 2020 Apr; 11(1):2045. PubMed ID: 32341352
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interesting developments at the nanoparticle-protein interface: implications for next generation drug delivery.
    Medintz IL
    Ther Deliv; 2016 Aug; 7(8):513-6. PubMed ID: 27444491
    [No Abstract]   [Full Text] [Related]  

  • 5. Quantum dot and superparamagnetic nanoparticle interaction with pathogenic fungi: internalization and toxicity profile.
    Rispail N; De Matteis L; Santos R; Miguel AS; Custardoy L; Testillano PS; Risueño MC; Pérez-de-Luque A; Maycock C; Fevereiro P; Oliva A; Fernández-Pacheco R; Ibarra MR; de la Fuente JM; Marquina C; Rubiales D; Prats E
    ACS Appl Mater Interfaces; 2014 Jun; 6(12):9100-10. PubMed ID: 24853082
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Zein Nanoparticles Uptake and Translocation in Hydroponically Grown Sugar Cane Plants.
    Prasad A; Astete CE; Bodoki AE; Windham M; Bodoki E; Sabliov CM
    J Agric Food Chem; 2018 Jul; 66(26):6544-6551. PubMed ID: 28767239
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanoparticle Charge and Size Control Foliar Delivery Efficiency to Plant Cells and Organelles.
    Hu P; An J; Faulkner MM; Wu H; Li Z; Tian X; Giraldo JP
    ACS Nano; 2020 Jul; 14(7):7970-7986. PubMed ID: 32628442
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorescence reports intact quantum dot uptake into roots and translocation to leaves of Arabidopsis thaliana and subsequent ingestion by insect herbivores.
    Koo Y; Wang J; Zhang Q; Zhu H; Chehab EW; Colvin VL; Alvarez PJ; Braam J
    Environ Sci Technol; 2015 Jan; 49(1):626-32. PubMed ID: 25437125
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanodelivery of nanoparticles to the cytoplasm of living cells.
    Emerson NT; Hsia CH; Rafalska-Metcalf IU; Yang H
    Nanoscale; 2014 May; 6(9):4538-43. PubMed ID: 24664211
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigating uptake of water-dispersible CdSe/ZnS quantum dot nanoparticles by Arabidopsis thaliana plants.
    Navarro DA; Bisson MA; Aga DS
    J Hazard Mater; 2012 Apr; 211-212():427-35. PubMed ID: 22226052
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Peptide-mediated Targeting of Nanoparticles with Chemical Cargoes to Chloroplasts in
    Santana I; Hu P; Jeon SJ; Castillo C; Tu H; Giraldo JP
    Bio Protoc; 2021 Jun; 11(12):e4060. PubMed ID: 34263003
    [TBL] [Abstract][Full Text] [Related]  

  • 12. No evidence for cerium dioxide nanoparticle translocation in maize plants.
    Birbaum K; Brogioli R; Schellenberg M; Martinoia E; Stark WJ; Günther D; Limbach LK
    Environ Sci Technol; 2010 Nov; 44(22):8718-23. PubMed ID: 20964359
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A perspective on bioconjugated nanoparticles and quantum dots.
    Huo Q
    Colloids Surf B Biointerfaces; 2007 Sep; 59(1):1-10. PubMed ID: 17544637
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Uptake, translocation, and nutrient efficiency of nano-bonechar as a plant growth regulator in hydroponics and soil systems.
    Shahid S; Imtiaz H; Rashid J; Xu M; Vithanage M; Ahmad M
    Environ Res; 2024 Jun; 251(Pt 2):118695. PubMed ID: 38493857
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional surface engineering of C-dots for fluorescent biosensing and in vivo bioimaging.
    Ding C; Zhu A; Tian Y
    Acc Chem Res; 2014 Jan; 47(1):20-30. PubMed ID: 23911118
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Future of Nanotechnology in Plant Pathology.
    Elmer W; White JC
    Annu Rev Phytopathol; 2018 Aug; 56():111-133. PubMed ID: 30149792
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cell Wall Pectin Content Refers to Favored Delivery of Negatively Charged Carbon Dots in Leaf Cells.
    Zhu L; Xu W; Yao X; Chen L; Li G; Gu J; Chen L; Li Z; Wu H
    ACS Nano; 2023 Dec; 17(23):23442-23454. PubMed ID: 37991776
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theoretical and computational investigations of nanoparticle-biomembrane interactions in cellular delivery.
    Ding HM; Ma YQ
    Small; 2015 Mar; 11(9-10):1055-71. PubMed ID: 25387905
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Barriers, pathways and processes for uptake, translocation and accumulation of nanomaterials in plants--Critical review.
    Schwab F; Zhai G; Kern M; Turner A; Schnoor JL; Wiesner MR
    Nanotoxicology; 2016; 10(3):257-78. PubMed ID: 26067571
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Colloidal suspensions of clay or titanium dioxide nanoparticles can inhibit leaf growth and transpiration via physical effects on root water transport.
    Asli S; Neumann PM
    Plant Cell Environ; 2009 May; 32(5):577-84. PubMed ID: 19210640
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.