These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 2924131)

  • 21. Central and systemic morphine-induced antinociception in mice: contribution of descending serotonergic and noradrenergic pathways.
    Wigdor S; Wilcox GL
    J Pharmacol Exp Ther; 1987 Jul; 242(1):90-5. PubMed ID: 3612540
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Substance P-induced long-term blockade of spinal adrenergic analgesia: reversal by morphine and naloxone.
    Nance PW; Sawynok J
    J Pharmacol Exp Ther; 1987 Mar; 240(3):972-7. PubMed ID: 2435888
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Spinal cholinergic and monoaminergic receptors mediate descending inhibition from the nuclei reticularis gigantocellularis and gigantocellularis pars alpha in the rat.
    Zhuo M; Gebhart GF
    Brain Res; 1990 Dec; 535(1):67-78. PubMed ID: 1981330
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Action site of adrenergic blockers to suppress the development of tolerance to morphine analgesia.
    Kaneto H; Inoue M
    Brain Res; 1990 Jan; 507(1):35-9. PubMed ID: 1967975
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Intrathecal morphine and clonidine: antinociceptive tolerance and cross-tolerance and effects on blood pressure.
    Solomon RE; Gebhart GF
    J Pharmacol Exp Ther; 1988 May; 245(2):444-54. PubMed ID: 3367301
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Excitatory modulation by a spinal cholinergic system of a descending sympathoexcitatory pathway in rats.
    Takahashi H; Buccafusco JJ
    Neuropharmacology; 1992 Mar; 31(3):259-69. PubMed ID: 1630594
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterization of the spinal adrenergic receptors mediating the spinal effects produced by the microinjection of morphine into the periaqueductal gray.
    Camarata PJ; Yaksh TL
    Brain Res; 1985 Jun; 336(1):133-42. PubMed ID: 2988700
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Involvement of 5-hydroxytryptamine-containing neurons in antinociception produced by injection of morphine into nucleus raphe magnus or onto spinal cord.
    Vasko MR; Pang IH; Vogt M
    Brain Res; 1984 Jul; 306(1-2):341-8. PubMed ID: 6547871
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evidence for the involvement of descending noradrenergic pathways in the antinociceptive effect of baclofen.
    Sawynok J; Dickson C
    Brain Res; 1985 May; 335(1):89-97. PubMed ID: 3924340
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of neonatal spinal cord serotonin depletion on opiate-induced analgesia in tests of thermal and mechanical pain.
    Giordano J; Barr GA
    Brain Res; 1988 Jun; 469(1-2):121-7. PubMed ID: 3401795
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Inhibition of a cutaneous nociceptive reflex by a noxious visceral stimulus is mediated by spinal cholinergic and descending serotonergic systems in the rat.
    Zhuo M; Gebhart GF
    Brain Res; 1992 Jul; 585(1-2):7-18. PubMed ID: 1511335
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Changes in G proteins genes expression in rat lumbar spinal cord support the inhibitory effect of chronic pain on the development of tolerance to morphine analgesia.
    Javan M; Ahmadiani A; Motamadi F; Kazemi B
    Neurosci Res; 2005 Nov; 53(3):250-6. PubMed ID: 16055216
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tolerance to morphine analgesia: decreased multiplicative interaction between spinal and supraspinal sites.
    Roerig SC; O'Brien SM; Fujimoto JM; Wilcox GL
    Brain Res; 1984 Aug; 308(2):360-3. PubMed ID: 6548169
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Examination of spinal monoamine receptors through which brainstem opiate-sensitive systems act in the rat.
    Jensen TS; Yaksh TL
    Brain Res; 1986 Jan; 363(1):114-27. PubMed ID: 3004638
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Spinal cord distribution of 3H-morphine after intrathecal administration: relationship to analgesia.
    Nishio Y; Sinatra RS; Kitahata LM; Collins JG
    Anesth Analg; 1989 Sep; 69(3):323-7. PubMed ID: 2774227
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Prostaglandins inhibit endogenous pain control mechanisms by blocking transmission at spinal noradrenergic synapses.
    Taiwo YO; Levine JD
    J Neurosci; 1988 Apr; 8(4):1346-9. PubMed ID: 2833584
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Spinal adenosine modulates descending antinociceptive pathways stimulated by morphine.
    DeLander GE; Hopkins CJ
    J Pharmacol Exp Ther; 1986 Oct; 239(1):88-93. PubMed ID: 2428975
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Multiple spinal mediators in parenteral nicotine-induced antinociception.
    Rogers DT; Iwamoto ET
    J Pharmacol Exp Ther; 1993 Oct; 267(1):341-9. PubMed ID: 7901397
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Differential contribution of descending serotonergic and noradrenergic systems to central Tyr-D-Ala2-Gly-NMePhe4-Gly-ol5 (DAMGO) and morphine-induced antinociception in mice.
    Arts KS; Holmes BB; Fujimoto JM
    J Pharmacol Exp Ther; 1991 Mar; 256(3):890-6. PubMed ID: 2005587
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Intracerebroventricular morphine releases adenosine and adenosine 3',5'-cyclic monophosphate from the spinal cord via a serotonergic mechanism.
    Sweeney MI; White TD; Sawynok J
    J Pharmacol Exp Ther; 1991 Dec; 259(3):1013-8. PubMed ID: 1662270
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.