BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 29241666)

  • 1. Identification of human circadian genes based on time course gene expression profiles by using a deep learning method.
    Cui P; Zhong T; Wang Z; Wang T; Zhao H; Liu C; Lu H
    Biochim Biophys Acta Mol Basis Dis; 2018 Jun; 1864(6 Pt B):2274-2283. PubMed ID: 29241666
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of Cell Cycle-Regulated Genes by Convolutional Neural Network.
    Liu C; Cui P; Huang T
    Comb Chem High Throughput Screen; 2017; 20(7):603-611. PubMed ID: 28413974
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distinguishing three subtypes of hematopoietic cells based on gene expression profiles using a support vector machine.
    Zhang YH; Hu Y; Zhang Y; Hu LD; Kong X
    Biochim Biophys Acta Mol Basis Dis; 2018 Jun; 1864(6 Pt B):2255-2265. PubMed ID: 29241664
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting and analyzing early wake-up associated gene expressions by integrating GWAS and eQTL studies.
    Li J; Huang T
    Biochim Biophys Acta Mol Basis Dis; 2018 Jun; 1864(6 Pt B):2241-2246. PubMed ID: 29109033
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Machine learning analysis of gene expression data reveals novel diagnostic and prognostic biomarkers and identifies therapeutic targets for soft tissue sarcomas.
    van IJzendoorn DGP; Szuhai K; Briaire-de Bruijn IH; Kostine M; Kuijjer ML; Bovée JVMG
    PLoS Comput Biol; 2019 Feb; 15(2):e1006826. PubMed ID: 30785874
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of five methods for genome-wide circadian gene identification.
    Wu G; Zhu J; Yu J; Zhou L; Huang JZ; Zhang Z
    J Biol Rhythms; 2014 Aug; 29(4):231-42. PubMed ID: 25238853
    [TBL] [Abstract][Full Text] [Related]  

  • 7. pySAPC, a python package for sparse affinity propagation clustering: Application to odontogenesis whole genome time series gene-expression data.
    Cao H; Amendt BA
    Biochim Biophys Acta; 2016 Nov; 1860(11 Pt B):2613-8. PubMed ID: 27288587
    [TBL] [Abstract][Full Text] [Related]  

  • 8. What time is it? Deep learning approaches for circadian rhythms.
    Agostinelli F; Ceglia N; Shahbaba B; Sassone-Corsi P; Baldi P
    Bioinformatics; 2016 Jun; 32(12):i8-i17. PubMed ID: 27307647
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic modeling helps interpret transcriptomic changes during malaria.
    Tang Y; Gupta A; Garimalla S; ; Galinski MR; Styczynski MP; Fonseca LL; Voit EO
    Biochim Biophys Acta Mol Basis Dis; 2018 Jun; 1864(6 Pt B):2329-2340. PubMed ID: 29069611
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparing deep neural network and other machine learning algorithms for stroke prediction in a large-scale population-based electronic medical claims database.
    Chen-Ying Hung ; Wei-Chen Chen ; Po-Tsun Lai ; Ching-Heng Lin ; Chi-Chun Lee
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():3110-3113. PubMed ID: 29060556
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A circadian gene expression atlas in mammals: implications for biology and medicine.
    Zhang R; Lahens NF; Ballance HI; Hughes ME; Hogenesch JB
    Proc Natl Acad Sci U S A; 2014 Nov; 111(45):16219-24. PubMed ID: 25349387
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Network-based method for mining novel HPV infection related genes using random walk with restart algorithm.
    Zhu L; Su F; Xu Y; Zou Q
    Biochim Biophys Acta Mol Basis Dis; 2018 Jun; 1864(6 Pt B):2376-2383. PubMed ID: 29197659
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A machine learning-based framework to identify type 2 diabetes through electronic health records.
    Zheng T; Xie W; Xu L; He X; Zhang Y; You M; Yang G; Chen Y
    Int J Med Inform; 2017 Jan; 97():120-127. PubMed ID: 27919371
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of a Deep Neural Network to Metabolomics Studies and Its Performance in Determining Important Variables.
    Date Y; Kikuchi J
    Anal Chem; 2018 Feb; 90(3):1805-1810. PubMed ID: 29278490
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Systematic learning of gene functional classes from DNA array expression data by using multilayer perceptrons.
    Mateos A; Dopazo J; Jansen R; Tu Y; Gerstein M; Stolovitzky G
    Genome Res; 2002 Nov; 12(11):1703-15. PubMed ID: 12421757
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coexpression network analysis identifies transcriptional modules associated with genomic alterations in neuroblastoma.
    Yang L; Li Y; Wei Z; Chang X
    Biochim Biophys Acta Mol Basis Dis; 2018 Jun; 1864(6 Pt B):2341-2348. PubMed ID: 29247836
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DL-ADR: a novel deep learning model for classifying genomic variants into adverse drug reactions.
    Liang Z; Huang JX; Zeng X; Zhang G
    BMC Med Genomics; 2016 Aug; 9 Suppl 2(Suppl 2):48. PubMed ID: 27510822
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A universal deep learning approach for modeling the flow of patients under different severities.
    Jiang S; Chin KS; Tsui KL
    Comput Methods Programs Biomed; 2018 Feb; 154():191-203. PubMed ID: 29249343
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of the functional alteration signatures across different cancer types with support vector machine and feature analysis.
    Wang S; Cai Y
    Biochim Biophys Acta Mol Basis Dis; 2018 Jun; 1864(6 Pt B):2218-2227. PubMed ID: 29277326
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gene expression inference with deep learning.
    Chen Y; Li Y; Narayan R; Subramanian A; Xie X
    Bioinformatics; 2016 Jun; 32(12):1832-9. PubMed ID: 26873929
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.