BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 29242048)

  • 1. Simplified immobilisation method for histidine-tagged enzymes in poly(methyl methacrylate) microfluidic devices.
    Kulsharova G; Dimov N; Marques MPC; Szita N; Baganz F
    N Biotechnol; 2018 Dec; 47():31-38. PubMed ID: 29242048
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Immobilised enzyme microreactor for screening of multi-step bioconversions: characterisation of a de novo transketolase-ω-transaminase pathway to synthesise chiral amino alcohols.
    Matosevic S; Lye GJ; Baganz F
    J Biotechnol; 2011 Sep; 155(3):320-9. PubMed ID: 21807042
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel functionalisation process for glucose oxidase immobilisation in poly(methyl methacrylate) microchannels in a flow system for amperometric determinations.
    Cerqueira MR; Grasseschi D; Matos RC; Angnes L
    Talanta; 2014 Aug; 126():20-6. PubMed ID: 24881530
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and characterization of a prototype enzyme microreactor: quantification of immobilized transketolase kinetics.
    Matosevic S; Lye GJ; Baganz F
    Biotechnol Prog; 2010; 26(1):118-26. PubMed ID: 19927318
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal assisted ultrasonic bonding method for poly(methyl methacrylate) (PMMA) microfluidic devices.
    Zhang Z; Wang X; Luo Y; He S; Wang L
    Talanta; 2010 Jun; 81(4-5):1331-8. PubMed ID: 20441903
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization and multi-step transketolase-ω-transaminase bioconversions in an immobilized enzyme microreactor (IEMR) with packed tube.
    Halim AA; Szita N; Baganz F
    J Biotechnol; 2013 Dec; 168(4):567-75. PubMed ID: 24055435
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasticizer-assisted bonding of poly(methyl methacrylate) microfluidic chips at low temperature.
    Duan H; Zhang L; Chen G
    J Chromatogr A; 2010 Jan; 1217(1):160-6. PubMed ID: 19945714
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Air Plasma-Enhanced Covalent Functionalization of Poly(methyl methacrylate): High-Throughput Protein Immobilization for Miniaturized Bioassays.
    Sathish S; Ishizu N; Shen AQ
    ACS Appl Mater Interfaces; 2019 Dec; 11(49):46350-46360. PubMed ID: 31722179
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication and characterization of poly(methyl methacrylate) microchannels by in situ polymerization with a novel metal template.
    Chen Z; Gao Y; Su R; Li C; Lin J
    Electrophoresis; 2003 Sep; 24(18):3246-52. PubMed ID: 14518052
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phase-changing sacrificial materials for solvent bonding of high-performance polymeric capillary electrophoresis microchips.
    Kelly RT; Pan T; Woolley AT
    Anal Chem; 2005 Jun; 77(11):3536-41. PubMed ID: 15924386
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of PMMA microfluidic chips using disposable agar hydrogel templates.
    Yao X; Chen Z; Chen G
    Electrophoresis; 2009 Dec; 30(24):4225-9. PubMed ID: 20013907
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein immobilization on the surface of polydimethylsiloxane and polymethyl methacrylate microfluidic devices.
    Khnouf R; Karasneh D; Albiss BA
    Electrophoresis; 2016 Feb; 37(3):529-35. PubMed ID: 26534833
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidic devices fabricated in poly(methyl methacrylate) using hot-embossing with integrated sampling capillary and fiber optics for fluorescence detection.
    Qi S; Liu X; Ford S; Barrows J; Thomas G; Kelly K; McCandless A; Lian K; Goettert J; Soper SA
    Lab Chip; 2002 May; 2(2):88-95. PubMed ID: 15100840
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Construction of a biomimetic surface on microfluidic chips for biofouling resistance.
    Bi H; Zhong W; Meng S; Kong J; Yang P; Liu B
    Anal Chem; 2006 May; 78(10):3399-405. PubMed ID: 16689543
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Facile route to enzyme immobilization: core-shell nanoenzyme particles consisting of well-defined poly(methyl methacrylate) cores and cellulase shells.
    Ho KM; Mao X; Gu L; Li P
    Langmuir; 2008 Oct; 24(19):11036-42. PubMed ID: 18788820
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid prototyping of poly(methyl methacrylate) microfluidic systems using solvent imprinting and bonding.
    Sun X; Peeni BA; Yang W; Becerril HA; Woolley AT
    J Chromatogr A; 2007 Aug; 1162(2):162-6. PubMed ID: 17466320
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidic DNA microarrays in PMMA chips: streamlined fabrication via simultaneous DNA immobilization and bonding activation by brief UV exposure.
    Sabourin D; Petersen J; Snakenborg D; Brivio M; Gudnadson H; Wolff A; Dufva M
    Biomed Microdevices; 2010 Aug; 12(4):673-81. PubMed ID: 20336488
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of different nonspecific binding blocking agents deposited inside poly(methyl methacrylate) microfluidic flow-cells.
    Le NC; Gubala V; Gandhiraman RP; Daniels S; Williams DE
    Langmuir; 2011 Jul; 27(14):9043-51. PubMed ID: 21648475
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface modification of poly(methyl methacrylate) used in the fabrication of microanalytical devices.
    Henry AC; Tutt TJ; Galloway M; Davidson YY; McWhorter CS; Soper SA; McCarley RL
    Anal Chem; 2000 Nov; 72(21):5331-7. PubMed ID: 11080884
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pressure-Free Assembling of Poly(methyl methacrylate) Microdevices via Microwave-Assisted Solvent Bonding and Its Biomedical Applications.
    Trinh KTL; Chae WR; Lee NY
    Biosensors (Basel); 2021 Dec; 11(12):. PubMed ID: 34940283
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.