These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 29242048)

  • 21. Fabrication of lab-on chip platforms by hot embossing and photo patterning.
    Maurya DK; Ng WY; Mahabadi KA; Liang YN; Rodríguez I
    Biotechnol J; 2007 Nov; 2(11):1381-8. PubMed ID: 17886237
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Preparation of poly(methyl acrylate) microfluidic chips surface-modified by hyperbranched polyamide ester and their application in the separation of biomolecules].
    Liu B; Lin D; Xu L; Lei Y; Bo Q; Shou C
    Se Pu; 2012 May; 30(5):440-4. PubMed ID: 22934404
    [TBL] [Abstract][Full Text] [Related]  

  • 23. PMMA/PDMS valves and pumps for disposable microfluidics.
    Zhang W; Lin S; Wang C; Hu J; Li C; Zhuang Z; Zhou Y; Mathies RA; Yang CJ
    Lab Chip; 2009 Nov; 9(21):3088-94. PubMed ID: 19823724
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A simple method using two-step hot embossing technique with shrinking for fabrication of cross microchannels on PMMA substrate and its application to electrophoretic separation of amino acids in functional drinks.
    Wiriyakun N; Nacapricha D; Chantiwas R
    Talanta; 2016 Dec; 161():574-582. PubMed ID: 27769450
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inexpensive and nonconventional fabrication of microfluidic devices in PMMA based on a soft-embossing protocol.
    Lobo-Júnior EO; Chagas CLS; Duarte LC; Cardoso TMG; de Souza FR; Lima RS; Coltro WKT
    Electrophoresis; 2020 Oct; 41(18-19):1641-1650. PubMed ID: 32726462
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transferring vertically aligned carbon nanotubes onto a polymeric substrate using a hot embossing technique for microfluidic applications.
    Mathur A; Roy SS; McLaughlin JA
    J R Soc Interface; 2010 Jul; 7(48):1129-33. PubMed ID: 20147316
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparing polyelectrolyte multilayer-coated PMMA microfluidic devices and glass microchips for electrophoretic separations.
    Currie CA; Shim JS; Lee SH; Ahn C; Limbach PA; Halsall HB; Heineman WR
    Electrophoresis; 2009 Dec; 30(24):4245-50. PubMed ID: 20013912
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fabrication, modification, and application of poly(methyl methacrylate) microfluidic chips.
    Chen Y; Zhang L; Chen G
    Electrophoresis; 2008 May; 29(9):1801-14. PubMed ID: 18384069
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Solvent Bonding for Fabrication of PMMA and COP Microfluidic Devices.
    Wan AM; Moore TA; Young EW
    J Vis Exp; 2017 Jan; (119):. PubMed ID: 28117831
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fabrication of microfluidic devices using dry film photoresist for microchip capillary electrophoresis.
    Tsai YC; Jen HP; Lin KW; Hsieh YZ
    J Chromatogr A; 2006 Apr; 1111(2):267-71. PubMed ID: 16384565
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Fabrications of a poly (methyl methacrylate) (PMMA) microfluidic chip-based DNA analysis device].
    Du XG
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Dec; 29(12):3379-82. PubMed ID: 20210174
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Surface modification for enhancing antibody binding on polymer-based microfluidic device for enzyme-linked immunosorbent assay.
    Bai Y; Koh CG; Boreman M; Juang YJ; Tang IC; Lee LJ; Yang ST
    Langmuir; 2006 Oct; 22(22):9458-67. PubMed ID: 17042569
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Surface modification of droplet polymeric microfluidic devices for the stable and continuous generation of aqueous droplets.
    Subramanian B; Kim N; Lee W; Spivak DA; Nikitopoulos DE; McCarley RL; Soper SA
    Langmuir; 2011 Jun; 27(12):7949-57. PubMed ID: 21608975
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Poly-L-histidine coated microfluidic devices for bacterial DNA purification without chaotropic solutions.
    Kastania AS; Petrou PS; Loukas CM; Gogolides E
    Biomed Microdevices; 2020 Jun; 22(3):44. PubMed ID: 32572586
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Lysis of gram-positive and gram-negative bacteria by antibacterial porous polymeric monolith formed in microfluidic biochips for sample preparation.
    Aly MA; Gauthier M; Yeow J
    Anal Bioanal Chem; 2014 Sep; 406(24):5977-87. PubMed ID: 25059724
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A sol-gel-modified poly(methyl methacrylate) electrophoresis microchip with a hydrophilic channel wall.
    Chen G; Xu X; Lin Y; Wang J
    Chemistry; 2007; 13(22):6461-7. PubMed ID: 17508382
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Efficient immobilization of enzymes on microchannel surface through His-tag and application for microreactor.
    Miyazaki M; Kaneno J; Yamaori S; Honda T; Briones MP; Uehara M; Arima K; Kanno K; Yamashita K; Yamaguchi Y; Nakamura H; Yonezawa H; Fujii M; Maeda H
    Protein Pept Lett; 2005 Feb; 12(2):207-10. PubMed ID: 15723648
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Stable microstructured network for protein patterning on a plastic microfluidic channel: strategy and characterization of on-chip enzyme microreactors.
    Qu H; Wang H; Huang Y; Zhong W; Lu H; Kong J; Yang P; Liu B
    Anal Chem; 2004 Nov; 76(21):6426-33. PubMed ID: 15516137
    [TBL] [Abstract][Full Text] [Related]  

  • 39. One-step immobilization of aminated and thiolated DNA onto poly(methylmethacrylate) (PMMA) substrates.
    Fixe F; Dufva M; Telleman P; Christensen CB
    Lab Chip; 2004 Jun; 4(3):191-5. PubMed ID: 15159777
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A polymer-based microfluidic device for immunosensing biochips.
    Soo Ko J; Yoon HC; Yang H; Pyo HB; Hyo Chung K; Jin Kim S; Tae Kim Y
    Lab Chip; 2003 May; 3(2):106-13. PubMed ID: 15100791
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.