BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 29242555)

  • 1. Intrinsic interactive reinforcement learning - Using error-related potentials for real world human-robot interaction.
    Kim SK; Kirchner EA; Stefes A; Kirchner F
    Sci Rep; 2017 Dec; 7(1):17562. PubMed ID: 29242555
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combining brain-computer interfaces with deep reinforcement learning for robot training: a feasibility study in a simulation environment.
    Vukelić M; Bui M; Vorreuther A; Lingelbach K
    Front Neuroergon; 2023; 4():1274730. PubMed ID: 38234482
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection of tactile-based error-related potentials (ErrPs) in human-robot interaction.
    Kim SK; Kirchner EA
    Front Neurorobot; 2023; 17():1297990. PubMed ID: 38162893
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Decomposing the effects of context valence and feedback information on speed and accuracy during reinforcement learning: a meta-analytical approach using diffusion decision modeling.
    Fontanesi L; Palminteri S; Lebreton M
    Cogn Affect Behav Neurosci; 2019 Jun; 19(3):490-502. PubMed ID: 31175616
    [TBL] [Abstract][Full Text] [Related]  

  • 5. I, robot: depression plays different roles in human-human and human-robot interactions.
    Zhang D; Shen J; Li S; Gao K; Gu R
    Transl Psychiatry; 2021 Aug; 11(1):438. PubMed ID: 34420040
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A human-centered safe robot reinforcement learning framework with interactive behaviors.
    Gu S; Kshirsagar A; Du Y; Chen G; Peters J; Knoll A
    Front Neurorobot; 2023; 17():1280341. PubMed ID: 38023448
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of Magnetic Surgical Robots With Model-Based Simulators and Reinforcement Learning.
    Barnoy Y; Erin O; Raval S; Pryor W; Mair LO; Weinberg IN; Diaz-Mercado Y; Krieger A; Hager GD
    IEEE Trans Med Robot Bionics; 2022 Nov; 4(4):945-956. PubMed ID: 37600471
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Closing the loop in minimally supervised human-robot interaction: formative and summative feedback.
    Mohan M; Nunez CM; Kuchenbecker KJ
    Sci Rep; 2024 May; 14(1):10564. PubMed ID: 38719859
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Continual Reinforcement Learning for Quadruped Robot Locomotion.
    Gai S; Lyu S; Zhang H; Wang D
    Entropy (Basel); 2024 Jan; 26(1):. PubMed ID: 38275501
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human-Guided Reinforcement Learning With Sim-to-Real Transfer for Autonomous Navigation.
    Wu J; Zhou Y; Yang H; Huang Z; Lv C
    IEEE Trans Pattern Anal Mach Intell; 2023 Dec; 45(12):14745-14759. PubMed ID: 37703148
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Learning-based personalisation of robot behaviour for robot-assisted therapy.
    Stolarz M; Mitrevski A; Wasil M; Plöger PG
    Front Robot AI; 2024; 11():1352152. PubMed ID: 38651054
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Judging robot ability: How people form implicit and explicit impressions of robot competence.
    Surdel N; Bigman YE; Shen X; Lee WY; Jung MF; Ferguson MJ
    J Exp Psychol Gen; 2024 May; 153(5):1309-1335. PubMed ID: 38647480
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inferring individual evaluation criteria for reaching trajectories with obstacle avoidance from EEG signals.
    Iwane F; Billard A; Millán JDR
    Sci Rep; 2023 Nov; 13(1):20163. PubMed ID: 37978205
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification and Verification of Error-Related Potentials Based on Cerebellar Targets.
    Niu C; Yan Z; Yin K; Zhou S
    Brain Sci; 2024 Feb; 14(3):. PubMed ID: 38539602
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Walking and falling: Using robot simulations to model the role of errors in infant walking.
    Ossmy O; Han D; MacAlpine P; Hoch J; Stone P; Adolph KE
    Dev Sci; 2024 Mar; 27(2):e13449. PubMed ID: 37750490
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Learning agile soccer skills for a bipedal robot with deep reinforcement learning.
    Haarnoja T; Moran B; Lever G; Huang SH; Tirumala D; Humplik J; Wulfmeier M; Tunyasuvunakool S; Siegel NY; Hafner R; Bloesch M; Hartikainen K; Byravan A; Hasenclever L; Tassa Y; Sadeghi F; Batchelor N; Casarini F; Saliceti S; Game C; Sreendra N; Patel K; Gwira M; Huber A; Hurley N; Nori F; Hadsell R; Heess N
    Sci Robot; 2024 Apr; 9(89):eadi8022. PubMed ID: 38598610
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adaptive Gait Acquisition through Learning Dynamic Stimulus Instinct of Bipedal Robot.
    Zhang Y; Chen X; Meng F; Yu Z; Du Y; Zhou Z; Gao J
    Biomimetics (Basel); 2024 May; 9(6):. PubMed ID: 38921190
    [TBL] [Abstract][Full Text] [Related]  

  • 18. StARformer: Transformer With State-Action-Reward Representations for Robot Learning.
    Shang J; Li X; Kahatapitiya K; Lee YC; Ryoo MS
    IEEE Trans Pattern Anal Mach Intell; 2023 Nov; 45(11):12862-12877. PubMed ID: 36067106
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Error-Related Neural Responses Recorded by Electroencephalography During Post-stroke Rehabilitation Movements.
    Kumar A; Fang Q; Fu J; Pirogova E; Gu X
    Front Neurorobot; 2019; 13():107. PubMed ID: 31920616
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adaptive Prior Selection for Repertoire-Based Online Adaptation in Robotics.
    Kaushik R; Desreumaux P; Mouret JB
    Front Robot AI; 2019; 6():151. PubMed ID: 33501166
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.