These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 29242714)

  • 21. Recent Trends in Compressive Raman Spectroscopy Using DMD-Based Binary Detection.
    Cebeci D; Mankani BR; Ben-Amotz D
    J Imaging; 2018 Dec; 5(1):. PubMed ID: 34470178
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparing the quantification of Forster resonance energy transfer measurement accuracies based on intensity, spectral, and lifetime imaging.
    Pelet S; Previte MJ; So PT
    J Biomed Opt; 2006; 11(3):34017. PubMed ID: 16822067
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Net-FLICS: fast quantitative wide-field fluorescence lifetime imaging with compressed sensing - a deep learning approach.
    Yao R; Ochoa M; Yan P; Intes X
    Light Sci Appl; 2019; 8():26. PubMed ID: 30854198
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In vivo quantitative FRET small animal imaging: Intensity versus lifetime-based FRET.
    Smith JT; Sinsuebphon N; Rudkouskaya A; Michalet X; Intes X; Barroso M
    Biophys Rep (N Y); 2023 Jun; 3(2):100110. PubMed ID: 37251213
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Compressive single-pixel hyperspectral imaging using RGB sensors.
    Tao C; Zhu H; Wang X; Zheng S; Xie Q; Wang C; Wu R; Zheng Z
    Opt Express; 2021 Mar; 29(7):11207-11220. PubMed ID: 33820238
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fast fit-free analysis of fluorescence lifetime imaging via deep learning.
    Smith JT; Yao R; Sinsuebphon N; Rudkouskaya A; Un N; Mazurkiewicz J; Barroso M; Yan P; Intes X
    Proc Natl Acad Sci U S A; 2019 Nov; 116(48):24019-24030. PubMed ID: 31719196
    [TBL] [Abstract][Full Text] [Related]  

  • 27.
    Smith JT; Sinsuebphon N; Rudkouskaya A; Michalet X; Intes X; Barroso M
    bioRxiv; 2023 Apr; ():. PubMed ID: 36747671
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Compressive hyperspectral microscopy for cancer detection.
    Oiknine Y; Abuleil M; Brozgol E; August IY; Barshack I; Abdulhalim I; Garini Y; Stern A
    J Biomed Opt; 2023 Sep; 28(9):096502. PubMed ID: 37692564
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparison of spectral FRET microscopy approaches for single-cell analysis.
    Deal J; Annamdevula N; Pleshinger DJ; Griswold JR; Odom A; Tayara A; Lall M; Browning C; Parker M; Rich TC; Leavesley SJ
    Proc SPIE Int Soc Opt Eng; 2020 Feb; 11243():. PubMed ID: 34035557
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spectral resolution in conjunction with polar plots improves the accuracy and reliability of FLIM measurements and estimates of FRET efficiency.
    Chen YC; Clegg RM
    J Microsc; 2011 Oct; 244(1):21-37. PubMed ID: 21801176
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bimodal reflectance and fluorescence multispectral endoscopy based on spectrally resolving detector arrays.
    Luthman AS; Waterhouse DJ; Ansel-Bollepalli L; Yoon J; Gordon GSD; Joseph J; di Pietro M; Januszewicz W; Bohndiek SE
    J Biomed Opt; 2018 Oct; 24(3):1-14. PubMed ID: 30358334
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Versatile compressive microscope for hyperspectral transmission and fluorescence lifetime imaging.
    Klein L; Kristoffersen AS; Touš J; Žídek K
    Opt Express; 2022 Apr; 30(9):15708-15720. PubMed ID: 35473285
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hadamard transform-based hyperspectral imaging using a single-pixel detector.
    Yi Q; Heng LZ; Liang L; Guangcan Z; Siong CF; Guangya Z
    Opt Express; 2020 May; 28(11):16126-16139. PubMed ID: 32549441
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reflectance Hyperspectral Imaging for Investigation of Works of Art: Old Master Paintings and Illuminated Manuscripts.
    Cucci C; Delaney JK; Picollo M
    Acc Chem Res; 2016 Oct; 49(10):2070-2079. PubMed ID: 27677864
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multispectral compressive fluorescence lifetime imaging microscopy with a SPAD array detector.
    Ghezzi A; Farina A; Bassi A; Valentini G; Labanca I; Acconcia G; Rech I; D'Andrea C
    Opt Lett; 2021 Mar; 46(6):1353-1356. PubMed ID: 33720185
    [TBL] [Abstract][Full Text] [Related]  

  • 36. FLIM-FRET for Cancer Applications.
    Rajoria S; Zhao L; Intes X; Barroso M
    Curr Mol Imaging; 2014; 3(2):144-161. PubMed ID: 26023359
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A single-shot hyperspectral phasor camera for fast, multi-color fluorescence microscopy.
    Wang P; Kitano M; Keomanee-Dizon K; Truong TV; Fraser SE; Cutrale F
    Cell Rep Methods; 2023 Apr; 3(4):100441. PubMed ID: 37159674
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Time-resolved confocal fluorescence imaging and spectrocopy system with single molecule sensitivity and sub-micrometer resolution.
    Wahl M; Koberling F; Patting M; Rahn H; Erdmann R
    Curr Pharm Biotechnol; 2004 Jun; 5(3):299-308. PubMed ID: 15180551
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hyperspectral Microscopy of Near-Infrared Fluorescence Enables 17-Chirality Carbon Nanotube Imaging.
    Roxbury D; Jena PV; Williams RM; Enyedi B; Niethammer P; Marcet S; Verhaegen M; Blais-Ouellette S; Heller DA
    Sci Rep; 2015 Sep; 5():14167. PubMed ID: 26387482
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Active DLP hyperspectral illumination: a noninvasive, in vivo, system characterization visualizing tissue oxygenation at near video rates.
    Zuzak KJ; Francis RP; Wehner EF; Litorja M; Cadeddu JA; Livingston EH
    Anal Chem; 2011 Oct; 83(19):7424-30. PubMed ID: 21842837
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.