These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 29242714)

  • 61. Gigapixel and 1440-perspective extended-angle display by megapixel MEMS-SLM.
    Hellman B; Lee T; Park JH; Takashima Y
    Opt Lett; 2020 Sep; 45(18):5016-5019. PubMed ID: 32932441
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Compressed single pixel imaging in the spatial frequency domain.
    Torabzadeh M; Park IY; Bartels RA; Durkin AJ; Tromberg BJ
    J Biomed Opt; 2017 Mar; 22(3):30501. PubMed ID: 28300272
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Phasor-based hyperspectral snapshot microscopy allows fast imaging of live, three-dimensional tissues for biomedical applications.
    Hedde PN; Cinco R; Malacrida L; Kamaid A; Gratton E
    Commun Biol; 2021 Jun; 4(1):721. PubMed ID: 34117344
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Phasor based analysis of FRET images recorded using spectrally resolved lifetime imaging.
    Fereidouni F; Blab GA; Gerritsen HC
    Methods Appl Fluoresc; 2014 May; 2(3):035001. PubMed ID: 29148469
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Recent applications of hyperspectral imaging in microbiology.
    Gowen AA; Feng Y; Gaston E; Valdramidis V
    Talanta; 2015 May; 137():43-54. PubMed ID: 25770605
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Time-domain whole-field fluorescence lifetime imaging with optical sectioning.
    Cole MJ; Siegel J; Webb SE; Jones R; Dowling K; Dayel MJ; Parsons-Karavassilis D; French PM; Lever MJ; Sucharov LO; Neil MA; Juskaitis R; Wilson T
    J Microsc; 2001 Sep; 203(Pt 3):246-57. PubMed ID: 11555142
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Compressive fluorescence microscopy for biological and hyperspectral imaging.
    Studer V; Bobin J; Chahid M; Mousavi HS; Candes E; Dahan M
    Proc Natl Acad Sci U S A; 2012 Jun; 109(26):E1679-87. PubMed ID: 22689950
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Wide Swath and High Resolution Airborne HyperSpectral Imaging System and Flight Validation.
    Zhang D; Yuan L; Wang S; Yu H; Zhang C; He D; Han G; Wang J; Wang Y
    Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30965579
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Hyperspectral Multiplexed Biological Imaging of Nanoprobes Emitting in the Short-Wave Infrared Region.
    Yakovliev A; Ziniuk R; Wang D; Xue B; Vretik LO; Nikolaeva OA; Tan M; Chen G; Slominskii YL; Qu J; Ohulchanskyy TY
    Nanoscale Res Lett; 2019 Jul; 14(1):243. PubMed ID: 31325079
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Efficient quantitative hyperspectral image unmixing method for large-scale Raman micro-spectroscopy data analysis.
    Lobanova EG; Lobanov SV
    Anal Chim Acta; 2019 Mar; 1050():32-43. PubMed ID: 30661589
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Hyperspectral infrared nanoimaging of organic samples based on Fourier transform infrared nanospectroscopy.
    Amenabar I; Poly S; Goikoetxea M; Nuansing W; Lasch P; Hillenbrand R
    Nat Commun; 2017 Feb; 8():14402. PubMed ID: 28198384
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Applications of Spatial Light Modulators in Raman Spectroscopy.
    Sinjab F; Liao Z; Notingher I
    Appl Spectrosc; 2019 Jul; 73(7):727-746. PubMed ID: 30987431
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Terahertz wave near-field compressive imaging with a spatial resolution of over λ/100.
    Chen SC; Du LH; Meng K; Li J; Zhai ZH; Shi QW; Li ZR; Zhu LG
    Opt Lett; 2019 Jan; 44(1):21-24. PubMed ID: 30645535
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Speckle-based hyperspectral imaging combining multiple scattering and compressive sensing in nanowire mats.
    French R; Gigan S; Muskens OL
    Opt Lett; 2017 May; 42(9):1820-1823. PubMed ID: 28454169
    [TBL] [Abstract][Full Text] [Related]  

  • 75. In vitro and in vivo phasor analysis of stoichiometry and pharmacokinetics using short-lifetime near-infrared dyes and time-gated imaging.
    Chen SJ; Sinsuebphon N; Rudkouskaya A; Barroso M; Intes X; Michalet X
    J Biophotonics; 2019 Mar; 12(3):e201800185. PubMed ID: 30421551
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Near-field hyperspectral optical imaging.
    Bouillard JS; Dickson W; Wurtz GA; Zayats AV
    Chemphyschem; 2014 Mar; 15(4):619-29. PubMed ID: 24677625
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Full spectrum fluorescence lifetime imaging with 0.5 nm spectral and 50 ps temporal resolution.
    Williams GOS; Williams E; Finlayson N; Erdogan AT; Wang Q; Fernandes S; Akram AR; Dhaliwal K; Henderson RK; Girkin JM; Bradley M
    Nat Commun; 2021 Nov; 12(1):6616. PubMed ID: 34785666
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Dual-coded compressive hyperspectral imaging.
    Lin X; Wetzstein G; Liu Y; Dai Q
    Opt Lett; 2014 Apr; 39(7):2044-7. PubMed ID: 24686670
    [TBL] [Abstract][Full Text] [Related]  

  • 79. High speed multispectral fluorescence lifetime imaging.
    Fereidouni F; Reitsma K; Gerritsen HC
    Opt Express; 2013 May; 21(10):11769-82. PubMed ID: 23736399
    [TBL] [Abstract][Full Text] [Related]  

  • 80. FRET-based small-molecule fluorescent probes: rational design and bioimaging applications.
    Yuan L; Lin W; Zheng K; Zhu S
    Acc Chem Res; 2013 Jul; 46(7):1462-73. PubMed ID: 23419062
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.