These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 29242887)

  • 21. Sulfur and selenium: the role of oxidation state in protein structure and function.
    Jacob C; Giles GI; Giles NM; Sies H
    Angew Chem Int Ed Engl; 2003 Oct; 42(39):4742-58. PubMed ID: 14562341
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Control of oxidative posttranslational cysteine modifications: from intricate chemistry to widespread biological and medical applications.
    Jacob C; Battaglia E; Burkholz T; Peng D; Bagrel D; Montenarh M
    Chem Res Toxicol; 2012 Mar; 25(3):588-604. PubMed ID: 22106817
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cysteine Oxidation in Proteins: Structure, Biophysics, and Simulation.
    Garrido Ruiz D; Sandoval-Perez A; Rangarajan AV; Gunderson EL; Jacobson MP
    Biochemistry; 2022 Oct; 61(20):2165-2176. PubMed ID: 36161872
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization and application of the biotin-switch assay for the identification of S-nitrosated proteins.
    Zhang Y; Keszler A; Broniowska KA; Hogg N
    Free Radic Biol Med; 2005 Apr; 38(7):874-81. PubMed ID: 15749383
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Expanding the functional diversity of proteins through cysteine oxidation.
    Reddie KG; Carroll KS
    Curr Opin Chem Biol; 2008 Dec; 12(6):746-54. PubMed ID: 18804173
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cysteine-based redox regulation and signaling in plants.
    Couturier J; Chibani K; Jacquot JP; Rouhier N
    Front Plant Sci; 2013; 4():105. PubMed ID: 23641245
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Inhibitory nitrosylation of mammalian thioredoxin reductase 1: Molecular characterization and evidence for its functional role in cellular nitroso-redox imbalance.
    Engelman R; Ziv T; Arnér ESJ; Benhar M
    Free Radic Biol Med; 2016 Aug; 97():375-385. PubMed ID: 27377780
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Redox modifications of cysteine residues in plant proteins].
    Szworst-Łupina D; Rusinowski Z; Zagdańska B
    Postepy Biochem; 2015; 61(2):191-7. PubMed ID: 26689012
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chemical proteomics reveals new targets of cysteine sulfinic acid reductase.
    Akter S; Fu L; Jung Y; Conte ML; Lawson JR; Lowther WT; Sun R; Liu K; Yang J; Carroll KS
    Nat Chem Biol; 2018 Nov; 14(11):995-1004. PubMed ID: 30177848
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chemical approaches to detect and analyze protein sulfenic acids.
    Furdui CM; Poole LB
    Mass Spectrom Rev; 2014; 33(2):126-46. PubMed ID: 24105931
    [TBL] [Abstract][Full Text] [Related]  

  • 31. S-Transnitrosation reactions of hydrogen sulfide (H
    Tsikas D; Böhmer A
    Nitric Oxide; 2017 May; 65():22-36. PubMed ID: 28185882
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Proteome screens for Cys residues oxidation: the redoxome.
    Chiappetta G; Ndiaye S; Igbaria A; Kumar C; Vinh J; Toledano MB
    Methods Enzymol; 2010; 473():199-216. PubMed ID: 20513479
    [TBL] [Abstract][Full Text] [Related]  

  • 33. How are nitrosothiols formed de novo in vivo?
    Lancaster JR
    Arch Biochem Biophys; 2017 Mar; 617():137-144. PubMed ID: 27794428
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Buried S-nitrosocysteine revealed in crystal structures of human thioredoxin.
    Weichsel A; Brailey JL; Montfort WR
    Biochemistry; 2007 Feb; 46(5):1219-27. PubMed ID: 17260951
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Thioredoxin-1 and posttranslational modifications.
    Haendeler J
    Antioxid Redox Signal; 2006; 8(9-10):1723-8. PubMed ID: 16987024
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Force field parameters for S-nitrosocysteine and molecular dynamics simulations of S-nitrosated thioredoxin.
    Han S
    Biochem Biophys Res Commun; 2008 Dec; 377(2):612-616. PubMed ID: 18929538
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Decomposition of S-nitrosocysteine via S- to N-transnitrosation.
    Peterson LA; Wagener T; Sies H; Stahl W
    Chem Res Toxicol; 2007 May; 20(5):721-3. PubMed ID: 17439249
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Intermolecular disulfide-dependent redox signalling.
    Putker M; Vos HR; Dansen TB
    Biochem Soc Trans; 2014 Aug; 42(4):971-8. PubMed ID: 25109988
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nitroso group transfer in s-nitrosocysteine: evidence of a new decomposition pathway for nitrosothiols.
    Adam C; García-Río L; Leis JR; Ribeiro L
    J Org Chem; 2005 Aug; 70(16):6353-61. PubMed ID: 16050697
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biological chemistry and functionality of protein sulfenic acids and related thiol modifications.
    Devarie-Baez NO; Silva Lopez EI; Furdui CM
    Free Radic Res; 2016; 50(2):172-94. PubMed ID: 26340608
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.