BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 29242993)

  • 1. Promotion of neuronal regeneration by using self-polymerized dendritic polypeptide scaffold for spinal cord tissue engineering.
    Wan JM; Liu LL; Zhang JF; Lu JW; Li Q
    J Mater Sci Mater Med; 2017 Dec; 29(1):6. PubMed ID: 29242993
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using primate neural stem cells cultured in self-assembling peptide nanofiber scaffolds to repair injured spinal cords in rats.
    Ye JC; Qin Y; Wu YF; Wang P; Tang Y; Huang L; Ma MJ; Zeng YS; Shen HY
    Spinal Cord; 2016 Nov; 54(11):933-941. PubMed ID: 27001129
    [TBL] [Abstract][Full Text] [Related]  

  • 3. FGL-functionalized self-assembling nanofiber hydrogel as a scaffold for spinal cord-derived neural stem cells.
    Wang J; Zheng J; Zheng Q; Wu Y; Wu B; Huang S; Fang W; Guo X
    Mater Sci Eng C Mater Biol Appl; 2015 Jan; 46():140-7. PubMed ID: 25491970
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polycaprolactone/polysialic acid hybrid, multifunctional nanofiber scaffolds for treatment of spinal cord injury.
    Zhang S; Wang XJ; Li WS; Xu XL; Hu JB; Kang XQ; Qi J; Ying XY; You J; Du YZ
    Acta Biomater; 2018 Sep; 77():15-27. PubMed ID: 30126591
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transplantation of tissue engineering neural network and formation of neuronal relay into the transected rat spinal cord.
    Lai BQ; Che MT; Du BL; Zeng X; Ma YH; Feng B; Qiu XC; Zhang K; Liu S; Shen HY; Wu JL; Ling EA; Zeng YS
    Biomaterials; 2016 Dec; 109():40-54. PubMed ID: 27665078
    [TBL] [Abstract][Full Text] [Related]  

  • 6. BD PuraMatrix peptide hydrogel as a culture system for human fetal Schwann cells in spinal cord regeneration.
    Moradi F; Bahktiari M; Joghataei MT; Nobakht M; Soleimani M; Hasanzadeh G; Fallah A; Zarbakhsh S; Hejazian LB; Shirmohammadi M; Maleki F
    J Neurosci Res; 2012 Dec; 90(12):2335-48. PubMed ID: 22996688
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [PREPARATION OF BIONIC COLLAGEN-HEPARIN SULFATE SPINAL CORD SCAFFOLD WITH THREE-DIMENSIONAL PRINT TECHNOLOGY].
    Zhang R; Tu Y; Zhao M; Chen C; Liang Haiqian ; Wang J; Zhang S; Li X
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2015 Aug; 29(8):1022-7. PubMed ID: 26677627
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biocompatibility of functionalized designer self-assembling nanofiber scaffolds containing FRM motif for neural stem cells.
    Zou Z; Liu T; Li J; Li P; Ding Q; Peng G; Zheng Q; Zeng X; Wu Y; Guo X
    J Biomed Mater Res A; 2014 May; 102(5):1286-93. PubMed ID: 23703883
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Co-transplantation of neural stem cells and Schwann cells within poly (L-lactic-co-glycolic acid) scaffolds facilitates axonal regeneration in hemisected rat spinal cord.
    Xia L; Wan H; Hao SY; Li DZ; Chen G; Gao CC; Li JH; Yang F; Wang SG; Liu S
    Chin Med J (Engl); 2013 Mar; 126(5):909-17. PubMed ID: 23489801
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neural stem cell- and Schwann cell-loaded biodegradable polymer scaffolds support axonal regeneration in the transected spinal cord.
    Olson HE; Rooney GE; Gross L; Nesbitt JJ; Galvin KE; Knight A; Chen B; Yaszemski MJ; Windebank AJ
    Tissue Eng Part A; 2009 Jul; 15(7):1797-805. PubMed ID: 19191513
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tissue-Engineered Regeneration of Hemisected Spinal Cord Using Human Endometrial Stem Cells, Poly ε-Caprolactone Scaffolds, and Crocin as a Neuroprotective Agent.
    Terraf P; Kouhsari SM; Ai J; Babaloo H
    Mol Neurobiol; 2017 Sep; 54(7):5657-5667. PubMed ID: 27624387
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering Microenvironment for Endogenous Neural Regeneration after Spinal Cord Injury by Reassembling Extracellular Matrix.
    Liu H; Xu X; Tu Y; Chen K; Song L; Zhai J; Chen S; Rong L; Zhou L; Wu W; So KF; Ramakrishna S; He L
    ACS Appl Mater Interfaces; 2020 Apr; 12(15):17207-17219. PubMed ID: 32207300
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tissue-engineered regeneration of completely transected spinal cord using induced neural stem cells and gelatin-electrospun poly (lactide-co-glycolide)/polyethylene glycol scaffolds.
    Liu C; Huang Y; Pang M; Yang Y; Li S; Liu L; Shu T; Zhou W; Wang X; Rong L; Liu B
    PLoS One; 2015; 10(3):e0117709. PubMed ID: 25803031
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Graft of the gelatin sponge scaffold containing genetically-modified neural stem cells promotes cell differentiation, axon regeneration, and functional recovery in rat with spinal cord transection.
    Du BL; Zeng X; Ma YH; Lai BQ; Wang JM; Ling EA; Wu JL; Zeng YS
    J Biomed Mater Res A; 2015 Apr; 103(4):1533-45. PubMed ID: 25046856
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Neural stem cells induced by neotype three-dimensional polypeptide-based self-assembled hydrogel].
    Song Y; Zheng Q; Guo X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2010 Jun; 27(3):612-6. PubMed ID: 20649030
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D culture of neural stem cells within conductive PEDOT layer-assembled chitosan/gelatin scaffolds for neural tissue engineering.
    Wang S; Guan S; Li W; Ge D; Xu J; Sun C; Liu T; Ma X
    Mater Sci Eng C Mater Biol Appl; 2018 Dec; 93():890-901. PubMed ID: 30274126
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polycaprolactone electrospun fiber scaffold loaded with iPSCs-NSCs and ASCs as a novel tissue engineering scaffold for the treatment of spinal cord injury.
    Zhou X; Shi G; Fan B; Cheng X; Zhang X; Wang X; Liu S; Hao Y; Wei Z; Wang L; Feng S
    Int J Nanomedicine; 2018; 13():6265-6277. PubMed ID: 30349249
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transplantation of artificial neural construct partly improved spinal tissue repair and functional recovery in rats with spinal cord transection.
    Du BL; Xiong Y; Zeng CG; He LM; Zhang W; Quan DP; Wu JL; Li Y; Zeng YS
    Brain Res; 2011 Jul; 1400():87-98. PubMed ID: 21658682
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New serum-derived albumin scaffold seeded with adipose-derived stem cells and olfactory ensheathing cells used to treat spinal cord injured rats.
    Ferrero-Gutierrez A; Menendez-Menendez Y; Alvarez-Viejo M; Meana A; Otero J
    Histol Histopathol; 2013 Jan; 28(1):89-100. PubMed ID: 23233062
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cellular prostheses fabricated with motor neurons seeded in self-assembling peptide promotes partial functional recovery after spinal cord injury in rats.
    Hou T; Wu Y; Wang L; Liu Y; Zeng L; Li M; Long Z; Chen H; Li Y; Wang Z
    Tissue Eng Part A; 2012 May; 18(9-10):974-85. PubMed ID: 22115283
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.