These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 29243250)

  • 1. A camera-based method for estimating absolute density in animals displaying home range behaviour.
    Campos-Candela A; Palmer M; Balle S; Alós J
    J Anim Ecol; 2018 May; 87(3):825-837. PubMed ID: 29243250
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recommended survey designs for occupancy modelling using motion-activated cameras: insights from empirical wildlife data.
    Shannon G; Lewis JS; Gerber BD
    PeerJ; 2014; 2():e532. PubMed ID: 25210658
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pairing field methods to improve inference in wildlife surveys while accommodating detection covariance.
    Clare J; McKinney ST; DePue JE; Loftin CS
    Ecol Appl; 2017 Oct; 27(7):2031-2047. PubMed ID: 28644579
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessing the robustness of time-to-event models for estimating unmarked wildlife abundance using remote cameras.
    Loonam KE; Lukacs PM; Ausband DE; Mitchell MS; Robinson HS
    Ecol Appl; 2021 Sep; 31(6):e02388. PubMed ID: 34156123
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Density-dependent space use affects interpretation of camera trap detection rates.
    Broadley K; Burton AC; Avgar T; Boutin S
    Ecol Evol; 2019 Dec; 9(24):14031-14041. PubMed ID: 31938501
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of New Methods for Quantifying Fish Density Using Underwater Stereo-video Tools.
    Denney C; Fields R; Gleason M; Starr R
    J Vis Exp; 2017 Nov; (129):. PubMed ID: 29286391
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The ecology of movement and behaviour: a saturated tripartite network for describing animal contacts.
    Manlove K; Aiello C; Sah P; Cummins B; Hudson PJ; Cross PC
    Proc Biol Sci; 2018 Sep; 285(1887):. PubMed ID: 30232156
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Territorial dynamics and stable home range formation for central place foragers.
    Potts JR; Harris S; Giuggioli L
    PLoS One; 2012; 7(3):e34033. PubMed ID: 22479510
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of scale of movement, detection probability, and true population density on common methods of estimating population density.
    Keiter DA; Davis AJ; Rhodes OE; Cunningham FL; Kilgo JC; Pepin KM; Beasley JC
    Sci Rep; 2017 Aug; 7(1):9446. PubMed ID: 28842589
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting animal home-range structure and transitions using a multistate Ornstein-Uhlenbeck biased random walk.
    Breed GA; Golson EA; Tinker MT
    Ecology; 2017 Jan; 98(1):32-47. PubMed ID: 27893946
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimating disease survey intensity and wildlife population size from the density of survey devices: Leg-hold traps and the brushtail possum.
    Sweetapple P; Nugent G
    Prev Vet Med; 2018 Nov; 159():220-226. PubMed ID: 30314786
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A low-cost towed video camera system for underwater surveys: comparative performance with standard methodology.
    Trobbiani GA; Irigoyen A; Venerus LA; Fiorda PM; Parma AM
    Environ Monit Assess; 2018 Oct; 190(11):683. PubMed ID: 30374778
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bayesian inference in camera trapping studies for a class of spatial capture-recapture models.
    Royle JA; Karanth KU; Gopalaswamy AM; Kumar NS
    Ecology; 2009 Nov; 90(11):3233-44. PubMed ID: 19967878
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Camera trap arrays improve detection probability of wildlife: Investigating study design considerations using an empirical dataset.
    O'Connor KM; Nathan LR; Liberati MR; Tingley MW; Vokoun JC; Rittenhouse TAG
    PLoS One; 2017; 12(4):e0175684. PubMed ID: 28422973
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Grizzly Bear Noninvasive Genetic Tagging Surveys: Estimating the Magnitude of Missed Detections.
    Fisher JT; Heim N; Code S; Paczkowski J
    PLoS One; 2016; 11(9):e0161055. PubMed ID: 27603134
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Methods for assessing small-scale variation in the abundance of a generalist mesopredator.
    Kämmerle JL; Corlatti L; Harms L; Storch I
    PLoS One; 2018; 13(11):e0207545. PubMed ID: 30462707
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A hierarchical model for estimating the spatial distribution and abundance of animals detected by continuous-time recorders.
    Dorazio RM; Karanth KU
    PLoS One; 2017; 12(5):e0176966. PubMed ID: 28520796
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A generalised random encounter model for estimating animal density with remote sensor data.
    Lucas TC; Moorcroft EA; Freeman R; Rowcliffe JM; Jones KE
    Methods Ecol Evol; 2015 May; 6(5):500-509. PubMed ID: 27547297
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling abundance, distribution, movement and space use with camera and telemetry data.
    Chandler RB; Crawford DA; Garrison EP; Miller KV; Cherry MJ
    Ecology; 2022 Oct; 103(10):e3583. PubMed ID: 34767254
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Applications of camera trap in wildlife population ecology].
    Li Q; Wu JG; Kou XJ; Feng LM
    Ying Yong Sheng Tai Xue Bao; 2013 Apr; 24(4):947-55. PubMed ID: 23898650
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.