BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 29243327)

  • 1. Fluorine-Containing Silsesquioxane-Based Hybrid Porous Polymers Mediated by Bases and Their Use in Water Remediation.
    Ge M; Liu H
    Chemistry; 2018 Feb; 24(9):2224-2231. PubMed ID: 29243327
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ferrocene-Functionalized Silsesquioxane-Based Porous Polymer for Efficient Removal of Dyes and Heavy Metal Ions.
    Yang X; Liu H
    Chemistry; 2018 Sep; 24(51):13504-13511. PubMed ID: 29934979
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorescence-Tuned Polyhedral Oligomeric Silsesquioxane-Based Porous Polymers.
    Wang D; Feng S; Liu H
    Chemistry; 2016 Sep; 22(40):14319-27. PubMed ID: 27533795
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design Hybrid Porous Organic/Inorganic Polymers Containing Polyhedral Oligomeric Silsesquioxane/Pyrene/Anthracene Moieties as a High-Performance Electrode for Supercapacitor.
    Ejaz M; Samy MM; Ye Y; Kuo SW; Gamal Mohamed M
    Int J Mol Sci; 2023 Jan; 24(3):. PubMed ID: 36768824
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A POSS-Phosphazene Based Porous Material for Adsorption of Metal Ions from Water.
    Soldatov M; Liu H
    Chem Asian J; 2019 Dec; 14(23):4345-4351. PubMed ID: 31651097
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Construction of Porous Organic/Inorganic Hybrid Polymers Based on Polyhedral Oligomeric Silsesquioxane for Energy Storage and Hydrogen Production from Water.
    Mohamed MG; Elsayed MH; Ye Y; Samy MM; Hassan AE; Mansoure TH; Wen Z; Chou HH; Chen KH; Kuo SW
    Polymers (Basel); 2022 Dec; 15(1):. PubMed ID: 36616530
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rational design and synthesis of hybrid porous polymers derived from polyhedral oligomeric silsesquioxanes via heck coupling reactions.
    Wang D; Xue L; Li L; Deng B; Feng S; Liu H; Zhao X
    Macromol Rapid Commun; 2013 May; 34(10):861-6. PubMed ID: 23529823
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Triphenylamine-Functionalized Silsesquioxane-Based Hybrid Porous Polymers: Tunable Porosity and Luminescence for Multianalyte Detection.
    Shen R; Liu Y; Yang W; Hou Y; Zhao X; Liu H
    Chemistry; 2017 Sep; 23(54):13465-13473. PubMed ID: 28695636
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Silsesquioxane-Based Triphenylamine-Linked Fluorescent Porous Polymer for Dyes Adsorption and Nitro-Aromatics Detection.
    Wang Q; Unno M; Liu H
    Materials (Basel); 2021 Jul; 14(14):. PubMed ID: 34300768
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation of Porous Polymers Based on the Building Blocks of Cyclophosphazene and Cage-like Silsesquioxane and Their Use as Basic Catalysts for Knoevenagel Reactions.
    Soldatov M; Wang Y; Liu H
    Chem Asian J; 2021 Jul; 16(14):1901-1905. PubMed ID: 34047057
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diphenylphosphine-Substituted Ferrocene/Silsesquioxane-Based Hybrid Porous Polymers as Highly Efficient Adsorbents for Water Treatment.
    Yang X; Liu H
    ACS Appl Mater Interfaces; 2019 Jul; 11(29):26474-26482. PubMed ID: 31259524
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In Situ Methylation Transforms Aggregation-Caused Quenching into Aggregation-Induced Emission: Functional Porous Silsesquioxane-Based Composites with Enhanced Near-Infrared Emission.
    Yan Y; Laine RM; Liu H
    Chempluschem; 2019 Oct; 84(10):1630-1637. PubMed ID: 31943923
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-Assembled, Fluorine-Rich Porous Organic Polymers: A Class of Mechanically Stiff and Hydrophobic Materials.
    Mukherjee S; Zeng Z; Shirolkar MM; Samanta P; Chaudhari AK; Tan JC; Ghosh SK
    Chemistry; 2018 Aug; 24(45):11771-11778. PubMed ID: 29808943
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Octa[4-(9-carbazolyl)phenyl]silsesquioxane-Based Porous Material for Dyes Adsorption and Sensing of Nitroaromatic Compounds.
    Li W; Jiang C; Liu H; Yan Y; Liu H
    Chem Asian J; 2019 Oct; 14(19):3363-3369. PubMed ID: 31464079
    [TBL] [Abstract][Full Text] [Related]  

  • 15. R-Silsesquioxane-Based Network Polymers by Fluoride Catalyzed Synthesis: An Investigation of Cross-Linker Structure and Its Influence on Porosity.
    Hu NH; Furgal JC
    Materials (Basel); 2020 Apr; 13(8):. PubMed ID: 32326565
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tuning the Surface Polarity of Microporous Organic Polymers for CO
    Chen J; Li H; Zhong M; Yang Q
    Chem Asian J; 2017 Sep; 12(17):2291-2298. PubMed ID: 28631882
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metallosalen-Based Ionic Porous Polymers as Bifunctional Catalysts for the Conversion of CO
    Luo R; Chen Y; He Q; Lin X; Xu Q; He X; Zhang W; Zhou X; Ji H
    ChemSusChem; 2017 Apr; 10(7):1526-1533. PubMed ID: 28039942
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Porous graphene materials for water remediation.
    Niu Z; Liu L; Zhang L; Chen X
    Small; 2014 Sep; 10(17):3434-41. PubMed ID: 24619776
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hybrid porous materials with high surface area derived from bromophenylethenyl-functionalized cubic siloxane-based building units.
    Chaikittisilp W; Sugawara A; Shimojima A; Okubo T
    Chemistry; 2010 May; 16(20):6006-14. PubMed ID: 20391584
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Silica-Containing Biomimetic Composites Based on Sea Urchin Skeleton and Polycalcium Organyl Silsesquioxane.
    Shapkin NP; Khalchenko IG; Drozdov AL; Fedorets AN; Buravlev IY; Andrasyuk AA; Maslova NV; Pervakov KA; Papynov EK
    Biomimetics (Basel); 2023 Jul; 8(3):. PubMed ID: 37504188
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.