These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 29243342)

  • 1. Achilles' Heel of Lithium-Air Batteries: Lithium Carbonate.
    Zhao Z; Huang J; Peng Z
    Angew Chem Int Ed Engl; 2018 Apr; 57(15):3874-3886. PubMed ID: 29243342
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrochemical Oxidation of Lithium Carbonate Generates Singlet Oxygen.
    Mahne N; Renfrew SE; McCloskey BD; Freunberger SA
    Angew Chem Int Ed Engl; 2018 May; 57(19):5529-5533. PubMed ID: 29543372
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Long-Cycle-Life Lithium-CO
    Ahmadiparidari A; Warburton RE; Majidi L; Asadi M; Chamaani A; Jokisaari JR; Rastegar S; Hemmat Z; Sayahpour B; Assary RS; Narayanan B; Abbasi P; Redfern PC; Ngo A; Vörös M; Greeley J; Klie R; Curtiss LA; Salehi-Khojin A
    Adv Mater; 2019 Oct; 31(40):e1902518. PubMed ID: 31441124
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Towards an Understanding of Li
    Liu C; Brant WR; Younesi R; Dong Y; Edström K; Gustafsson T; Zhu J
    ChemSusChem; 2017 Apr; 10(7):1592-1599. PubMed ID: 28247542
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Li
    Liu L; Liu Y; Wang C; Peng X; Fang W; Hou Y; Wang J; Ye J; Wu Y
    Small Methods; 2022 Jan; 6(1):e2101280. PubMed ID: 35041287
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Long-Life Lithium-Air Battery in Ambient Air with a Polymer Electrolyte Containing a Redox Mediator.
    Guo Z; Li C; Liu J; Wang Y; Xia Y
    Angew Chem Int Ed Engl; 2017 Jun; 56(26):7505-7509. PubMed ID: 28524448
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Li-Air Battery with Ultralong Cycle Life in Ambient Air.
    Wang L; Pan J; Zhang Y; Cheng X; Liu L; Peng H
    Adv Mater; 2018 Jan; 30(3):. PubMed ID: 29194803
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recycling of Primary Lithium Batteries Production Residues.
    Kahl M; Pavón S; Bertau M
    Chemphyschem; 2021 Mar; 22(6):577-584. PubMed ID: 33464667
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Rechargeable Li-CO
    Li C; Guo Z; Yang B; Liu Y; Wang Y; Xia Y
    Angew Chem Int Ed Engl; 2017 Jul; 56(31):9126-9130. PubMed ID: 28612470
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In Situ TEM Observations of Discharging/Charging of Solid-State Lithium-Sulfur Batteries at High Temperatures.
    Wang Z; Tang Y; Zhang L; Li M; Shan Z; Huang J
    Small; 2020 Jul; 16(28):e2001899. PubMed ID: 32519445
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reversible Discharge Products in Li-Air Batteries.
    Liu T; Zhao S; Xiong Q; Yu J; Wang J; Huang G; Ni M; Zhang X
    Adv Mater; 2023 May; 35(20):e2208925. PubMed ID: 36502282
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controlling Residual Lithium in High-Nickel (>90 %) Lithium Layered Oxides for Cathodes in Lithium-Ion Batteries.
    Seong WM; Cho KH; Park JW; Park H; Eum D; Lee MH; Kim IS; Lim J; Kang K
    Angew Chem Int Ed Engl; 2020 Oct; 59(42):18662-18669. PubMed ID: 32668043
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolving aprotic Li-air batteries.
    Wu Z; Tian Y; Chen H; Wang L; Qian S; Wu T; Zhang S; Lu J
    Chem Soc Rev; 2022 Sep; 51(18):8045-8101. PubMed ID: 36047454
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanostructured electrolytes for stable lithium electrodeposition in secondary batteries.
    Tu Z; Nath P; Lu Y; Tikekar MD; Archer LA
    Acc Chem Res; 2015 Nov; 48(11):2947-56. PubMed ID: 26496667
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly Rechargeable Lithium-CO
    Qie L; Lin Y; Connell JW; Xu J; Dai L
    Angew Chem Int Ed Engl; 2017 Jun; 56(24):6970-6974. PubMed ID: 28510337
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Correlating Catalyst Design and Discharged Product to Reduce Overpotential in Li-CO
    Li J; Dai A; Amine K; Lu J
    Small; 2021 Dec; 17(48):e2007760. PubMed ID: 33739573
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intrinsically Optimizing Charge Transfer via Tuning Charge/Discharge Mode for Lithium-Oxygen Batteries.
    Liu W; Shen Y; Yu Y; Lu X; Zhang W; Huang Z; Meng J; Huang Y; Guo Z
    Small; 2019 May; 15(19):e1900154. PubMed ID: 30977973
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insight into the Interfacial Process and Mechanism in Lithium-Sulfur Batteries: An In Situ AFM Study.
    Lang SY; Shi Y; Guo YG; Wang D; Wen R; Wan LJ
    Angew Chem Int Ed Engl; 2016 Dec; 55(51):15835-15839. PubMed ID: 27860060
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Revealing the CO
    Shen ZZ; Lang SY; Liu RZ; Zhou C; Zhang YZ; Liu B; Wen R
    Angew Chem Int Ed Engl; 2024 Jan; 63(1):e202316781. PubMed ID: 37955211
    [TBL] [Abstract][Full Text] [Related]  

  • 20. First-principles Study on the Charge Transport Mechanism of Lithium Sulfide (Li2 S) in Lithium-Sulfur Batteries.
    Kim BS; Lee MS; Park KY; Kang K
    Chem Asian J; 2016 Apr; 11(8):1288-92. PubMed ID: 26928985
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.