These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
314 related articles for article (PubMed ID: 29243479)
1. Size-Dependent Catalytic Activity of Monodispersed Nickel Nanoparticles for the Hydrolytic Dehydrogenation of Ammonia Borane. Guo K; Li H; Yu Z ACS Appl Mater Interfaces; 2018 Jan; 10(1):517-525. PubMed ID: 29243479 [TBL] [Abstract][Full Text] [Related]
2. Synthesis of Ni-Ru alloy nanoparticles and their high catalytic activity in dehydrogenation of ammonia borane. Chen G; Desinan S; Rosei R; Rosei F; Ma D Chemistry; 2012 Jun; 18(25):7925-30. PubMed ID: 22539444 [TBL] [Abstract][Full Text] [Related]
3. Nickel(0) nanoparticles supported on bare or coated cobalt ferrite as highly active, magnetically isolable and reusable catalyst for hydrolytic dehydrogenation of ammonia borane. Manna J; Akbayrak S; Özkar S J Colloid Interface Sci; 2017 Dec; 508():359-368. PubMed ID: 28843925 [TBL] [Abstract][Full Text] [Related]
4. Graphene-supported Ag-based core-shell nanoparticles for hydrogen generation in hydrolysis of ammonia borane and methylamine borane. Yang L; Luo W; Cheng G ACS Appl Mater Interfaces; 2013 Aug; 5(16):8231-40. PubMed ID: 23927435 [TBL] [Abstract][Full Text] [Related]
5. Ni nanoparticles supported on graphitic carbon nitride as visible light catalysts for hydrolytic dehydrogenation of ammonia borane. Gao M; Yu Y; Yang W; Li J; Xu S; Feng M; Li H Nanoscale; 2019 Feb; 11(8):3506-3513. PubMed ID: 30741302 [TBL] [Abstract][Full Text] [Related]
6. Monodisperse nickel nanoparticles and their catalysis in hydrolytic dehydrogenation of ammonia borane. Metin O; Mazumder V; Ozkar S; Sun S J Am Chem Soc; 2010 Feb; 132(5):1468-9. PubMed ID: 20078051 [TBL] [Abstract][Full Text] [Related]
7. Aqueous solution synthesis of Pt-M (M = Fe, Co, Ni) bimetallic nanoparticles and their catalysis for the hydrolytic dehydrogenation of ammonia borane. Wang S; Zhang D; Ma Y; Zhang H; Gao J; Nie Y; Sun X ACS Appl Mater Interfaces; 2014 Aug; 6(15):12429-35. PubMed ID: 25058566 [TBL] [Abstract][Full Text] [Related]
8. Amine-capped Co nanoparticles for highly efficient dehydrogenation of ammonia borane. Hu J; Chen Z; Li M; Zhou X; Lu H ACS Appl Mater Interfaces; 2014 Aug; 6(15):13191-200. PubMed ID: 25036741 [TBL] [Abstract][Full Text] [Related]
9. Bimetallic Au-Ni nanoparticles embedded in SiO2 nanospheres: synergetic catalysis in hydrolytic dehydrogenation of ammonia borane. Jiang HL; Umegaki T; Akita T; Zhang XB; Haruta M; Xu Q Chemistry; 2010 Mar; 16(10):3132-7. PubMed ID: 20127771 [TBL] [Abstract][Full Text] [Related]
10. Reducible tungsten(VI) oxide-supported ruthenium(0) nanoparticles: highly active catalyst for hydrolytic dehydrogenation of ammonia borane. Akbayrak S; Tonbul Y; Özkar S Turk J Chem; 2023; 47(5):1224-1238. PubMed ID: 38173757 [TBL] [Abstract][Full Text] [Related]
11. In situ facile synthesis of Ru-based core-shell nanoparticles supported on carbon black and their high catalytic activity in the dehydrogenation of amine-boranes. Cao N; Su J; Hong X; Luo W; Cheng G Chem Asian J; 2014 Feb; 9(2):562-71. PubMed ID: 24288206 [TBL] [Abstract][Full Text] [Related]
12. Complete Dehydrogenation of Hydrazine Borane on Manganese Oxide Nanorod-Supported Ni@Ir Core-Shell Nanoparticles. Yurderi M; Top T; Bulut A; Kanberoglu GS; Kaya M; Zahmakiran M Inorg Chem; 2020 Jul; 59(14):9728-9738. PubMed ID: 32589025 [TBL] [Abstract][Full Text] [Related]
13. Graphene-Supported Trimetallic Core-Shell Cu@CoNi Nanoparticles for Catalytic Hydrolysis of Amine Borane. Meng X; Yang L; Cao N; Du C; Hu K; Su J; Luo W; Cheng G Chempluschem; 2014 Feb; 79(2):325-332. PubMed ID: 31986590 [TBL] [Abstract][Full Text] [Related]
14. Ultrafine Ni-MoO Liu W; Yao L; Sun X; Wang W; Feng G; Yao Q; Zhang L; Lu ZH ChemSusChem; 2024 May; 17(9):e202400415. PubMed ID: 38482550 [TBL] [Abstract][Full Text] [Related]
15. Engineering Nickel/Palladium Heterojunctions for Dehydrogenation of Ammonia Borane: Improving the Catalytic Performance with 3D Mesoporous Structures and External Nitrogen-Doped Carbon Layers. Yuan Y; Sun L; Wu G; Yuan Y; Zhan W; Wang X; Han X Inorg Chem; 2020 Feb; 59(3):2104-2110. PubMed ID: 31942798 [TBL] [Abstract][Full Text] [Related]
16. Highly Efficient Catalytic Hydrogen Evolution from Ammonia Borane Using the Synergistic Effect of Crystallinity and Size of Noble-Metal-Free Nanoparticles Supported by Porous Metal-Organic Frameworks. Liu P; Gu X; Kang K; Zhang H; Cheng J; Su H ACS Appl Mater Interfaces; 2017 Mar; 9(12):10759-10767. PubMed ID: 28271874 [TBL] [Abstract][Full Text] [Related]
17. B-N polymer embedded iron(0) nanoparticles as highly active and long lived catalyst in the dehydrogenation of ammonia borane. Duman S; Metin O; Ozkar S J Nanosci Nanotechnol; 2013 Jul; 13(7):4954-61. PubMed ID: 23901516 [TBL] [Abstract][Full Text] [Related]
18. Carbon-nanotube-based rhodium nanoparticles as highly-active catalyst for hydrolytic dehydrogenation of dimethylamineborane at room temperature. Günbatar S; Aygun A; Karataş Y; Gülcan M; Şen F J Colloid Interface Sci; 2018 Nov; 530():321-327. PubMed ID: 29982024 [TBL] [Abstract][Full Text] [Related]
19. Ruthenium nanoparticles confined in SBA-15 as highly efficient catalyst for hydrolytic dehydrogenation of ammonia borane and hydrazine borane. Yao Q; Lu ZH; Yang K; Chen X; Zhu M Sci Rep; 2015 Oct; 5():15186. PubMed ID: 26471355 [TBL] [Abstract][Full Text] [Related]
20. Catalytic hydrolysis of ammonia borane via cobalt palladium nanoparticles. Sun D; Mazumder V; Metin Ö; Sun S ACS Nano; 2011 Aug; 5(8):6458-64. PubMed ID: 21766875 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]