These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 29243624)
1. Evaluation of the potential of FTIR and chemometrics for separation between defective and non-defective coffees. Craig AP; Franca AS; Oliveira LS Food Chem; 2012 Jun; 132(3):1368-1374. PubMed ID: 29243624 [TBL] [Abstract][Full Text] [Related]
2. Discrimination between immature and mature green coffees by attenuated total reflectance and diffuse reflectance Fourier transform infrared spectroscopy. Craig AP; Franca AS; Oliveira LS J Food Sci; 2011 Oct; 76(8):C1162-8. PubMed ID: 22417580 [TBL] [Abstract][Full Text] [Related]
3. Fourier transform infrared spectroscopy and near infrared spectroscopy for the quantification of defects in roasted coffees. Craig AP; Franca AS; Oliveira LS; Irudayaraj J; Ileleji K Talanta; 2015 Mar; 134():379-386. PubMed ID: 25618683 [TBL] [Abstract][Full Text] [Related]
4. Chemical characterisation of non-defective and defective green arabica and robusta coffees by electrospray ionization-mass spectrometry (ESI-MS). Mendonça JC; Franca AS; Oliveira LS; Nunes M Food Chem; 2008 Nov; 111(2):490-7. PubMed ID: 26047455 [TBL] [Abstract][Full Text] [Related]
5. Attenuated Total Reflectance Fourier Transform Spectroscopy (ATR-FTIR) and chemometrics for discrimination of espresso coffees with different sensory characteristics. Belchior V; Botelho BG; Oliveira LS; Franca AS Food Chem; 2019 Feb; 273():178-185. PubMed ID: 30292366 [TBL] [Abstract][Full Text] [Related]
6. Application of elastic net and infrared spectroscopy in the discrimination between defective and non-defective roasted coffees. Craig AP; Franca AS; Oliveira LS; Irudayaraj J; Ileleji K Talanta; 2014 Oct; 128():393-400. PubMed ID: 25059177 [TBL] [Abstract][Full Text] [Related]
7. Quantitative evaluation of multiple adulterants in roasted coffee by Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) and chemometrics. Reis N; Franca AS; Oliveira LS Talanta; 2013 Oct; 115():563-8. PubMed ID: 24054633 [TBL] [Abstract][Full Text] [Related]
8. Application of Attenuated Total Reflectance-Fourier Transformed Infrared (ATR-FTIR) Spectroscopy To Determine the Chlorogenic Acid Isomer Profile and Antioxidant Capacity of Coffee Beans. Liang N; Lu X; Hu Y; Kitts DD J Agric Food Chem; 2016 Jan; 64(3):681-9. PubMed ID: 26725502 [TBL] [Abstract][Full Text] [Related]
9. Detection and discrimination of sedative-hypnotics in spiked beverage dry residues using attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy combined with chemometrics. Teoh WK; Mohamed Sadiq NS; Saisahas K; Phonchai A; Kunalan V; Md Muslim NZ; Limbut W; Abdullah AFL; Chang KH J Forensic Sci; 2023 Jan; 68(1):75-85. PubMed ID: 36273275 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of green coffee beans quality using near infrared spectroscopy: a quantitative approach. Santos JR; Sarraguça MC; Rangel AO; Lopes JA Food Chem; 2012 Dec; 135(3):1828-35. PubMed ID: 22953929 [TBL] [Abstract][Full Text] [Related]
12. Data on roasted coffee with specific defects analyzed by infrared-photoacoustic spectroscopy and chemometrics. Dias RCE; Valderrama P; Março PH; Dos Santos Scholz MB; Edelmann M; Yeretzian C Data Brief; 2018 Oct; 20():242-249. PubMed ID: 30140720 [TBL] [Abstract][Full Text] [Related]
13. Rapid Prediction of Moisture Content in Intact Green Coffee Beans Using Near Infrared Spectroscopy. Adnan A; Hörsten DV; Pawelzik E; Mörlein AD Foods; 2017 May; 6(5):. PubMed ID: 28534842 [TBL] [Abstract][Full Text] [Related]
14. Feasibility study on chemometric discrimination of roasted Arabica coffees by solvent extraction and Fourier transform infrared spectroscopy. Wang N; Fu Y; Lim LT J Agric Food Chem; 2011 Apr; 59(7):3220-6. PubMed ID: 21381653 [TBL] [Abstract][Full Text] [Related]
15. Comparison of Spectroscopy-Based Methods and Chemometrics to Confirm Classification of Specialty Coffees. Belchior V; Botelho BG; Franca AS Foods; 2022 Jun; 11(11):. PubMed ID: 35681405 [TBL] [Abstract][Full Text] [Related]
16. Discrimination of green arabica and Robusta coffee beans by Raman spectroscopy. Keidel A; von Stetten D; Rodrigues C; Máguas C; Hildebrandt P J Agric Food Chem; 2010 Nov; 58(21):11187-92. PubMed ID: 20942389 [TBL] [Abstract][Full Text] [Related]
17. Classification of illicit liquors based on their geographic origin using Attenuated total reflectance (ATR) - Fourier transform infrared (FT-IR) spectroscopy and chemometrics. Yadav PK; Sharma RM Forensic Sci Int; 2019 Feb; 295():e1-e5. PubMed ID: 30638754 [TBL] [Abstract][Full Text] [Related]
18. A rapid ATR-FTIR spectroscopic method for detection of sibutramine adulteration in tea and coffee based on hierarchical cluster and principal component analyses. Cebi N; Yilmaz MT; Sagdic O Food Chem; 2017 Aug; 229():517-526. PubMed ID: 28372210 [TBL] [Abstract][Full Text] [Related]
19. Combining mid infrared spectroscopy and paper spray mass spectrometry in a data fusion model to predict the composition of coffee blends. Assis C; Pereira HV; Amador VS; Augusti R; de Oliveira LS; Sena MM Food Chem; 2019 May; 281():71-77. PubMed ID: 30658767 [TBL] [Abstract][Full Text] [Related]
20. Prediction of black, immature and sour defective beans in coffee blends by using Laser-Induced Breakdown Spectroscopy. Silva TV; Milori DMBP; Neto JAG; Ferreira EJ; Ferreira EC Food Chem; 2019 Apr; 278():223-227. PubMed ID: 30583366 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]