BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

53 related articles for article (PubMed ID: 29243656)

  • 1. Authentication of edible vegetable oils adulterated with used frying oil by Fourier Transform Infrared Spectroscopy.
    Zhang Q; Liu C; Sun Z; Hu X; Shen Q; Wu J
    Food Chem; 2012 Jun; 132(3):1607-1613. PubMed ID: 29243656
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid Identification of Adulteration in Edible Vegetable Oils Based on Low-Field Nuclear Magnetic Resonance Relaxation Fingerprints.
    Huang ZM; Xin JX; Sun SS; Li Y; Wei DX; Zhu J; Wang XL; Wang J; Yao YF
    Foods; 2021 Dec; 10(12):. PubMed ID: 34945619
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of the degree of degradation of frying rapeseed oil using fourier-transform infrared spectroscopy combined with partial least-squares regression.
    Chen JY; Zhang H; Ma J; Tuchiya T; Miao Y
    Int J Anal Chem; 2015; 2015():185367. PubMed ID: 25802523
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid quantitative authentication and analysis of camellia oil adulterated with edible oils by electronic nose and FTIR spectroscopy.
    Wang X; Gu Y; Lin W; Zhang Q
    Curr Res Food Sci; 2024; 8():100732. PubMed ID: 38699681
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GC-MS and ATR-FTIR Spectroscopy Coupled with Chemometric Analysis for Detection and Quantification of White Turmeric (
    Syafri S; Gari Lindo GN; Alen Y; Syofyan S; Hamidi D
    Pak J Biol Sci; 2024 Mar; 27(3):160-167. PubMed ID: 38686738
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification and Validation of Metabolic Markers for Adulteration Detection of Edible Oils Using Metabolic Networks.
    Dou X; Zhang L; Wang X; Yang R; Wang X; Ma F; Yu L; Mao J; Li H; Wang X; Li P
    Metabolites; 2020 Feb; 10(3):. PubMed ID: 32121379
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The combination of Fourier-transform infrared spectroscopy with pattern recognition techniques for classification and discrimination of red snapper fish oils.
    Irnawati I; Windarsih A; Fadzillah NA; Rohman A; Nadia OMH; Arlana S; Ruslin
    J Adv Pharm Technol Res; 2024; 15(2):99-103. PubMed ID: 38903555
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monitoring of frying process in canola oil blend using fourier transform infrared and chemometrics techniques.
    Ahmad MH; Shahbaz Z; Imran M; Khan MK; Muhammad N; Iqbal S; Ahmed W; Ahmad T
    Food Sci Nutr; 2021 Nov; 9(11):6089-6098. PubMed ID: 34760240
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trends in authentication of edible oils using vibrational spectroscopic techniques.
    Ozen B; Cavdaroglu C; Tokatli F
    Anal Methods; 2024 Jun; ():. PubMed ID: 38899503
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A modified sequential wavenumber selection-discriminant analysis with Bayesian optimization strategy for detection and identification of chia seed oil adulteration using Raman spectroscopy.
    Abdanan Mehdizadeh S; Noshad M; Hojjati M
    Talanta; 2024 Jun; 277():126439. PubMed ID: 38897011
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Machine learning identification of edible vegetable oils from fatty acid compositions and hyperspectral images.
    Hwang J; Choi KO; Jeong S; Lee S
    Curr Res Food Sci; 2024; 8():100742. PubMed ID: 38708100
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of heavy metals in edible oils by a novel voltammetry taste sensor array.
    Kiani H; Beheshti B; Borghei AM; Rahmati MH
    J Food Sci Technol; 2024 Jun; 61(6):1126-1137. PubMed ID: 38562596
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spectroscopic evaluation of sesame and mustard oils treated with Murchana method.
    Deekshitha S; Neelavara Makkithaya K; Sajankila Nadumane S; Hussain G; Sankar Mal S; Sundara BK; Pai P; Mazumder N
    Lasers Med Sci; 2024 Apr; 39(1):99. PubMed ID: 38602564
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterizing Edible Oils by Oblique-Incidence Reflectivity Difference Combined with Machine Learning Algorithms.
    Sun X; Hu Y; Liu C; Zhang S; Yan S; Liu X; Zhao K
    Foods; 2024 May; 13(9):. PubMed ID: 38731791
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microbial diversity of milk ghee in southern Gansu and its effect on the formation of ghee flavor compounds.
    Liu Z; Li H; Gao D; Su J; Su Y; Ma Z; Li Z; Qi Y; Ding G
    Open Life Sci; 2022; 17(1):1629-1640. PubMed ID: 36567720
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Statistical FT-IR Spectroscopy for the Characterization of 17 Vegetable Oils.
    Kokalj Ladan M; Kočevar Glavač N
    Molecules; 2022 May; 27(10):. PubMed ID: 35630666
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Solvent-Free Approach to Crosslinked Hydrophobic Polymeric Coatings on Paper Using Vegetable Oil.
    Loesch-Zhang A; Cordt C; Geissler A; Biesalski M
    Polymers (Basel); 2022 Apr; 14(9):. PubMed ID: 35566941
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of storage condition on the physicochemical characteristics of sunflower seed oil.
    Xu W; Yao J; Yi Y; Wang HX; Wang LM
    RSC Adv; 2019 Dec; 9(72):42262-42271. PubMed ID: 35542860
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation on the quality diversity and quality-FTIR characteristic relationship of sunflower seed oils.
    Yi Y; Yao J; Xu W; Wang LM; Wang HX
    RSC Adv; 2019 Aug; 9(47):27347-27360. PubMed ID: 35529180
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The application of machine-learning and Raman spectroscopy for the rapid detection of edible oils type and adulteration.
    Zhao H; Zhan Y; Xu Z; John Nduwamungu J; Zhou Y; Powers R; Xu C
    Food Chem; 2022 Mar; 373(Pt B):131471. PubMed ID: 34749090
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.