BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 29243656)

  • 21. Detection of Adulterated Vegetable Oils Containing Waste Cooking Oils Based on the Contents and Ratios of Cholesterol, β-Sitosterol, and Campesterol by Gas Chromatography/Mass Spectrometry.
    Zhao H; Wang Y; Xu X; Ren H; Li L; Xiang L; Zhong W
    J AOAC Int; 2015; 98(6):1645-54. PubMed ID: 26651578
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rapid determination of phospholipid content of vegetable oils by FTIR spectroscopy combined with partial least-square regression.
    Meng X; Pan Q; Ding Y; Jiang L
    Food Chem; 2014 Mar; 147():272-8. PubMed ID: 24206718
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Random forest as one-class classifier and infrared spectroscopy for food adulteration detection.
    de Santana FB; Borges Neto W; Poppi RJ
    Food Chem; 2019 Sep; 293():323-332. PubMed ID: 31151619
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Highly efficient authentication of edible oils by FTIR spectroscopy coupled with chemometrics.
    Ye Q; Meng X
    Food Chem; 2022 Aug; 385():132661. PubMed ID: 35299015
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rapid Determination of Acid Value of Edible Oils via FTIR Spectroscopy Using Infrared Quartz Cuvette.
    Hu K; Huyan Z; Geng Q; Yu X
    J Oleo Sci; 2019 Feb; 68(2):121-129. PubMed ID: 30651412
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Non-destructive fraud detection in rosehip oil by MIR spectroscopy and chemometrics.
    Santana FB; Gontijo LC; Mitsutake H; Mazivila SJ; Souza LM; Borges Neto W
    Food Chem; 2016 Oct; 209():228-33. PubMed ID: 27173556
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Stimulated Brillouin scattering in combination with visible absorption spectroscopy for authentication of vegetable oils and detection of olive oil adulteration.
    Shi J; Yuan D; Hao S; Wang H; Luo N; Liu J; Zhang Y; Zhang W; He X; Chen Z
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Jan; 206():320-327. PubMed ID: 30144748
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Authentication and identification of adulterants in virgin coconut oil using ATR/FTIR in tandem with DD-SIMCA one class modeling.
    Neves MG; Poppi RJ
    Talanta; 2020 Nov; 219():121338. PubMed ID: 32887068
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Model Optimization of Ternary System Adulteration Detection in Camellia Oil Based on Visible/Near Infrared Spectroscopy].
    Mo XX; Zhou Y; Sun T; Wu YQ; Liu MH
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Dec; 36(12):3881-4. PubMed ID: 30235404
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rapid detection of authenticity and adulteration of walnut oil by FTIR and fluorescence spectroscopy: a comparative study.
    Li B; Wang H; Zhao Q; Ouyang J; Wu Y
    Food Chem; 2015 Aug; 181():25-30. PubMed ID: 25794716
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Identification of vegetable oil botanical speciation in refined vegetable oil blends using an innovative combination of chromatographic and spectroscopic techniques.
    Osorio MT; Haughey SA; Elliott CT; Koidis A
    Food Chem; 2015 Dec; 189():67-73. PubMed ID: 26190602
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reflectance Spectroscopy with Multivariate Methods for Non-Destructive Discrimination of Edible Oil Adulteration.
    Su N; Weng S; Wang L; Xu T
    Biosensors (Basel); 2021 Dec; 11(12):. PubMed ID: 34940249
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Authentication of canned fish packing oils by means of Fourier transform infrared spectroscopy.
    Dominguez-Vidal A; Pantoja-de la Rosa J; Cuadros-Rodríguez L; Ayora-Cañada MJ
    Food Chem; 2016 Jan; 190():122-127. PubMed ID: 26212950
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Determination of the degree of degradation of frying rapeseed oil using fourier-transform infrared spectroscopy combined with partial least-squares regression.
    Chen JY; Zhang H; Ma J; Tuchiya T; Miao Y
    Int J Anal Chem; 2015; 2015():185367. PubMed ID: 25802523
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Determination of vegetable oils and fats adulterants in diesel oil by high performance liquid chromatography and multivariate methods.
    Brandão LF; Braga JW; Suarez PA
    J Chromatogr A; 2012 Feb; 1225():150-7. PubMed ID: 22257926
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A methodological approach to preprocessing FTIR spectra of adulterated sesame oil.
    Khodabakhshian R; Seyedalibeyk Lavasani H; Weller P
    Food Chem; 2023 Sep; 419():136055. PubMed ID: 37027973
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Raman spectroscopy combined with pattern recognition methods for rapid identification of crude soybean oil adulteration].
    Li BN; Wu YW; Wang Y; Zu WC; Chen SC
    Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Oct; 34(10):2696-700. PubMed ID: 25739210
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Rapid authentication of olive oil adulteration by Raman spectrometry.
    Zou MQ; Zhang XF; Qi XH; Ma HL; Dong Y; Liu CW; Guo X; Wang H
    J Agric Food Chem; 2009 Jul; 57(14):6001-6. PubMed ID: 19537730
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sample classification for improved performance of PLS models applied to the quality control of deep-frying oils of different botanic origins analyzed using ATR-FTIR spectroscopy.
    Kuligowski J; Carrión D; Quintás G; Garrigues S; de la Guardia M
    Anal Bioanal Chem; 2011 Jan; 399(3):1305-14. PubMed ID: 21116610
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparison of near infrared spectroscopy and Raman spectroscopy for the identification and quantification through MCR-ALS and PLS of peanut oil adulterants.
    Castro RC; Ribeiro DSM; Santos JLM; Páscoa RNMJ
    Talanta; 2021 Aug; 230():122373. PubMed ID: 33934802
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.