These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 29243764)

  • 1. Aqueous dispersions of lipid nanoparticles wet hydrophobic and superhydrophobic surfaces.
    Kumar M; Kulkarni MA; Chembu NG; Banpurkar A; Kumaraswamy G
    Soft Matter; 2018 Jan; 14(2):205-215. PubMed ID: 29243764
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparison of spreading behaviors of Silwet L-77 on dry and wet lotus leaves.
    Tang X; Dong J; Li X
    J Colloid Interface Sci; 2008 Sep; 325(1):223-7. PubMed ID: 18571664
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A wetting experiment as a tool to study the physicochemical processes accompanying the contact of hydrophobic and superhydrophobic materials with aqueous media.
    Boinovich L; Emelyanenko A
    Adv Colloid Interface Sci; 2012 Nov; 179-182():133-41. PubMed ID: 22795775
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cold-induced spreading of water drops on hydrophobic surfaces.
    Tavakoli F; Kavehpour HP
    Langmuir; 2015 Feb; 31(7):2120-6. PubMed ID: 25631237
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of superhydrophobic copper surface on various substrates for roll-off, self-cleaning, and water/oil separation.
    Sasmal AK; Mondal C; Sinha AK; Gauri SS; Pal J; Aditya T; Ganguly M; Dey S; Pal T
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):22034-43. PubMed ID: 25419984
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coacervate-Enhanced Deposition of Sprayed Pesticide on Hydrophobic/Superhydrophobic Abaxial Leaf Surfaces.
    Zhang L; Wang J; Fan Y; Wang Y
    Adv Sci (Weinh); 2023 Jun; 10(18):e2300270. PubMed ID: 37078792
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomimetic superhydrophobic surfaces by combining mussel-inspired adhesion with lotus-inspired coating.
    Xue CH; Ji XQ; Zhang J; Ma JZ; Jia ST
    Nanotechnology; 2015 Aug; 26(33):335602. PubMed ID: 26222622
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Viscoelastic drops moving on hydrophilic and superhydrophobic surfaces.
    Xu H; Clarke A; Rothstein JP; Poole RJ
    J Colloid Interface Sci; 2018 Mar; 513():53-61. PubMed ID: 29132105
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deposition and Spread of Aqueous Pesticide Droplets on Hydrophobic/Superhydrophobic Surfaces by Fast Aggregation of Surfactants.
    Fan Y; Wang Y
    Langmuir; 2023 Apr; 39(16):5631-5640. PubMed ID: 37053578
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bouncing Dynamics of Impact Droplets on the Biomimetic Plane and Convex Superhydrophobic Surfaces with Dual-Level and Three-Level Structures.
    Lian Z; Xu J; Ren W; Wang Z; Yu H
    Nanomaterials (Basel); 2019 Oct; 9(11):. PubMed ID: 31731520
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wetting Dynamics of Nanoparticle Dispersions: From Fully Spreading to Non-sticking and the Deposition of Nanoparticle-Laden Surface Droplets.
    Bazazi P; Hejazi SH
    ACS Appl Mater Interfaces; 2022 May; 14(17):20280-20290. PubMed ID: 35446544
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Drop impact on inclined superhydrophobic surfaces.
    LeClear S; LeClear J; Abhijeet ; Park KC; Choi W
    J Colloid Interface Sci; 2016 Jan; 461():114-121. PubMed ID: 26397917
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Superhydrophobic and adhesive properties of surfaces: testing the quality by an elaborated scanning electron microscopy method.
    Ensikat HJ; Mayser M; Barthlott W
    Langmuir; 2012 Oct; 28(40):14338-46. PubMed ID: 22978578
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Testing the performance of superhydrophobic aluminum surfaces.
    Ruiz-Cabello FJM; Ibáñez-Ibáñez PF; Gómez-Lopera JF; Martínez-Aroza J; Cabrerizo-Vílchez M; Rodríguez-Valverde MA
    J Colloid Interface Sci; 2017 Dec; 508():129-136. PubMed ID: 28822862
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spreading, evaporation, and contact line dynamics of surfactant-laden microdrops.
    Gokhale SJ; Plawsky JL; Wayner PC
    Langmuir; 2005 Aug; 21(18):8188-97. PubMed ID: 16114921
    [TBL] [Abstract][Full Text] [Related]  

  • 17. One pot synthesis of opposing 'rose petal' and 'lotus leaf' superhydrophobic materials with zinc oxide nanorods.
    Myint MT; Hornyak GL; Dutta J
    J Colloid Interface Sci; 2014 Feb; 415():32-8. PubMed ID: 24267327
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interfacial behavior of cubic liquid crystalline nanoparticles at hydrophilic and hydrophobic surfaces.
    Vandoolaeghe P; Tiberg F; Nylander T
    Langmuir; 2006 Oct; 22(22):9169-74. PubMed ID: 17042525
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid Bouncing of High-Speed Drops on Hydrophobic Surfaces with Microcavities.
    Zhang R; Hao P; He F
    Langmuir; 2016 Oct; 32(39):9967-9974. PubMed ID: 27599116
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Water drop friction on superhydrophobic surfaces.
    Olin P; Lindström SB; Pettersson T; Wågberg L
    Langmuir; 2013 Jul; 29(29):9079-89. PubMed ID: 23721176
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.