These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 29243853)
1. Design and Synthesis of Aza-Bicyclononene Dienophiles for Rapid Fluorogenic Ligations. Siegl SJ; Vázquez A; Dzijak R; Dračínský M; Galeta J; Rampmaier R; Klepetářová B; Vrabel M Chemistry; 2018 Feb; 24(10):2426-2432. PubMed ID: 29243853 [TBL] [Abstract][Full Text] [Related]
2. Mechanism-Based Fluorogenic trans-Cyclooctene-Tetrazine Cycloaddition. Vázquez A; Dzijak R; Dračínský M; Rampmaier R; Siegl SJ; Vrabel M Angew Chem Int Ed Engl; 2017 Jan; 56(5):1334-1337. PubMed ID: 28026913 [TBL] [Abstract][Full Text] [Related]
3. Advances in Tetrazine Bioorthogonal Chemistry Driven by the Synthesis of Novel Tetrazines and Dienophiles. Wu H; Devaraj NK Acc Chem Res; 2018 May; 51(5):1249-1259. PubMed ID: 29638113 [TBL] [Abstract][Full Text] [Related]
4. Conformationally Strained trans-Cyclooctene (sTCO) Enables the Rapid Construction of (18)F-PET Probes via Tetrazine Ligation. Wang M; Svatunek D; Rohlfing K; Liu Y; Wang H; Giglio B; Yuan H; Wu Z; Li Z; Fox J Theranostics; 2016; 6(6):887-95. PubMed ID: 27162558 [TBL] [Abstract][Full Text] [Related]
5. Cycloadditions of Trans-Cyclooctenes and Nitrones as Tools for Bioorthogonal Labelling. Margison KD; Bilodeau DA; Mahmoudi F; Pezacki JP Chembiochem; 2020 Apr; 21(7):948-951. PubMed ID: 31617669 [TBL] [Abstract][Full Text] [Related]
6. Fluorescence Quenching Effects of Tetrazines and Their Diels-Alder Products: Mechanistic Insight Toward Fluorogenic Efficiency. Pinto-Pacheco B; Carbery WP; Khan S; Turner DB; Buccella D Angew Chem Int Ed Engl; 2020 Dec; 59(49):22140-22149. PubMed ID: 33245600 [TBL] [Abstract][Full Text] [Related]
7. An Extended Approach for the Development of Fluorogenic trans-Cyclooctene-Tetrazine Cycloadditions. Siegl SJ; Galeta J; Dzijak R; Vázquez A; Del Río-Villanueva M; Dračínský M; Vrabel M Chembiochem; 2019 Apr; 20(7):886-890. PubMed ID: 30561884 [TBL] [Abstract][Full Text] [Related]
8. A dark intermediate in the fluorogenic reaction between tetrazine fluorophores and Hild F; Werther P; Yserentant K; Wombacher R; Herten DP Biophys Rep (N Y); 2022 Dec; 2(4):100084. PubMed ID: 36570717 [TBL] [Abstract][Full Text] [Related]
9. Monochromophoric Design Strategy for Tetrazine-Based Colorful Bioorthogonal Probes with a Single Fluorescent Core Skeleton. Lee Y; Cho W; Sung J; Kim E; Park SB J Am Chem Soc; 2018 Jan; 140(3):974-983. PubMed ID: 29240995 [TBL] [Abstract][Full Text] [Related]
10. A Systematic Study of Coumarin-Tetrazine Light-Up Probes for Bioorthogonal Fluorescence Imaging. Galeta J; Dzijak R; Obořil J; Dračínský M; Vrabel M Chemistry; 2020 Aug; 26(44):9945-9953. PubMed ID: 32339341 [TBL] [Abstract][Full Text] [Related]
11. Trans-cyclooctene-a Swiss army knife for bioorthogonal chemistry: exploring the synthesis, reactivity, and applications in biomedical breakthroughs. Adhikari K; Vanermen M; Da Silva G; Van den Wyngaert T; Augustyns K; Elvas F EJNMMI Radiopharm Chem; 2024 Jun; 9(1):47. PubMed ID: 38844698 [TBL] [Abstract][Full Text] [Related]
12. Studies on the Stability and Stabilization of Fang Y; Judkins JC; Boyd SJ; Am Ende CW; Rohlfing K; Huang Z; Xie Y; Johnson DS; Fox JM Tetrahedron; 2019 Aug; 75(32):4307-4317. PubMed ID: 32612312 [TBL] [Abstract][Full Text] [Related]
13. An Optimized Protocol for the Synthesis of Peptides Containing trans-Cyclooctene and Bicyclononyne Dienophiles as Useful Multifunctional Bioorthogonal Probes. La-Venia A; Dzijak R; Rampmaier R; Vrabel M Chemistry; 2021 Sep; 27(54):13632-13641. PubMed ID: 34241924 [TBL] [Abstract][Full Text] [Related]
15. Bioorthogonal Fluorescence Turn-On Labeling Based on Bicyclononyne-Tetrazine Cycloaddition Reactions that Form Pyridazine Products. Siegl SJ; Galeta J; Dzijak R; Dračínský M; Vrabel M Chempluschem; 2019 May; 84(5):493-497. PubMed ID: 31245251 [TBL] [Abstract][Full Text] [Related]
16. Fluorogenic Bifunctional trans-Cyclooctenes as Efficient Tools for Investigating Click-to-Release Kinetics. de Geus MAR; Maurits E; Sarris AJC; Hansen T; Kloet MS; Kamphorst K; Ten Hoeve W; Robillard MS; Pannwitz A; Bonnet SA; Codée JDC; Filippov DV; Overkleeft HS; van Kasteren SI Chemistry; 2020 Aug; 26(44):9900-9904. PubMed ID: 32154603 [TBL] [Abstract][Full Text] [Related]
17. Development of a novel antibody-tetrazine conjugate for bioorthogonal pretargeting. Maggi A; Ruivo E; Fissers J; Vangestel C; Chatterjee S; Joossens J; Sobott F; Staelens S; Stroobants S; Van Der Veken P; Wyffels L; Augustyns K Org Biomol Chem; 2016 Aug; 14(31):7544-51. PubMed ID: 27431745 [TBL] [Abstract][Full Text] [Related]
18. Micro-flow photosynthesis of new dienophiles for inverse-electron-demand Diels-Alder reactions. Potential applications for pretargeted Billaud EMF; Shahbazali E; Ahamed M; Cleeren F; Noël T; Koole M; Verbruggen A; Hessel V; Bormans G Chem Sci; 2017 Feb; 8(2):1251-1258. PubMed ID: 28451267 [TBL] [Abstract][Full Text] [Related]
19. Light-activated tetrazines enable precision live-cell bioorthogonal chemistry. Liu L; Zhang D; Johnson M; Devaraj NK Nat Chem; 2022 Sep; 14(9):1078-1085. PubMed ID: 35788560 [TBL] [Abstract][Full Text] [Related]
20. Trans-cyclooctene tag with improved properties for tumor pretargeting with the diels-alder reaction. Rossin R; van Duijnhoven SM; Läppchen T; van den Bosch SM; Robillard MS Mol Pharm; 2014 Sep; 11(9):3090-6. PubMed ID: 25077373 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]