These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 29243907)

  • 1. Strategy of Metal-Polymer Composite Stent To Accelerate Biodegradation of Iron-Based Biomaterials.
    Qi Y; Qi H; He Y; Lin W; Li P; Qin L; Hu Y; Chen L; Liu Q; Sun H; Liu Q; Zhang G; Cui S; Hu J; Yu L; Zhang D; Ding J
    ACS Appl Mater Interfaces; 2018 Jan; 10(1):182-192. PubMed ID: 29243907
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long-Term Efficacy of Biodegradable Metal-Polymer Composite Stents After the First and the Second Implantations into Porcine Coronary Arteries.
    Li X; Zhang W; Lin W; Qiu H; Qi Y; Ma X; Qi H; He Y; Zhang H; Qian J; Zhang G; Gao R; Zhang D; Ding J
    ACS Appl Mater Interfaces; 2020 Apr; 12(13):15703-15715. PubMed ID: 32159942
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of Acceleration of Iron Corrosion by a Polylactide Coating.
    Qi Y; Li X; He Y; Zhang D; Ding J
    ACS Appl Mater Interfaces; 2019 Jan; 11(1):202-218. PubMed ID: 30511850
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Biodegradable Metal-Polymer Composite Stent Safe and Effective on Physiological and Serum-Containing Biomimetic Conditions.
    Zhang H; Zhang W; Qiu H; Zhang G; Li X; Qi H; Guo J; Qian J; Shi X; Gao X; Shi D; Zhang D; Gao R; Ding J
    Adv Healthc Mater; 2022 Nov; 11(22):e2201740. PubMed ID: 36057108
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo degradation and endothelialization of an iron bioresorbable scaffold.
    Lin W; Zhang H; Zhang W; Qi H; Zhang G; Qian J; Li X; Qin L; Li H; Wang X; Qiu H; Shi X; Zheng W; Zhang D; Gao R; Ding J
    Bioact Mater; 2021 Apr; 6(4):1028-1039. PubMed ID: 33102944
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel approach to temporary stenting: degradable cardiovascular stents produced from corrodible metal-results 6-18 months after implantation into New Zealand white rabbits.
    Peuster M; Wohlsein P; Brügmann M; Ehlerding M; Seidler K; Fink C; Brauer H; Fischer A; Hausdorf G
    Heart; 2001 Nov; 86(5):563-9. PubMed ID: 11602554
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Absorbable coronary stents. New promising technology].
    Erbel R; Böse D; Haude M; Kordish I; Churzidze S; Malyar N; Konorza T; Sack S
    Herz; 2007 Jun; 32(4):308-19. PubMed ID: 17607538
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fully biodegradable coronary stents : progress to date.
    Ramcharitar S; Serruys PW
    Am J Cardiovasc Drugs; 2008; 8(5):305-14. PubMed ID: 18828642
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hybrid interpenetrating network of polyester coronary stent with tunable biodegradation and mechanical properties.
    Shi D; Kang Y; Jiang Z; Li X; Zhang H; Wang Q; Guo J; Jiang H; Luo Q; Ding J
    Biomaterials; 2024 Jan; 304():122411. PubMed ID: 38061184
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long-term coronary arterial response to biodegradable polymer biolimus-eluting stents in comparison with durable polymer sirolimus-eluting stents and bare-metal stents: five-year follow-up optical coherence tomography study.
    Kuramitsu S; Sonoda S; Yokoi H; Iwabuchi M; Nishizaki Y; Shinozaki T; Domei T; Hyodo M; Inoue K; Shirai S; Ando K; Nobuyoshi M
    Atherosclerosis; 2014 Nov; 237(1):23-9. PubMed ID: 25190308
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved safety and reduction in stent thrombosis associated with biodegradable polymer-based biolimus-eluting stents versus durable polymer-based sirolimus-eluting stents in patients with coronary artery disease: final 5-year report of the LEADERS (Limus Eluted From A Durable Versus ERodable Stent Coating) randomized, noninferiority trial.
    Serruys PW; Farooq V; Kalesan B; de Vries T; Buszman P; Linke A; Ischinger T; Klauss V; Eberli F; Wijns W; Morice MC; Di Mario C; Corti R; Antoni D; Sohn HY; Eerdmans P; Rademaker-Havinga T; van Es GA; Meier B; Jüni P; Windecker S
    JACC Cardiovasc Interv; 2013 Aug; 6(8):777-89. PubMed ID: 23968698
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biodegradable metals for cardiovascular stent application: interests and new opportunities.
    Moravej M; Mantovani D
    Int J Mol Sci; 2011; 12(7):4250-70. PubMed ID: 21845076
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electroformed iron as new biomaterial for degradable stents: development process and structure-properties relationship.
    Moravej M; Prima F; Fiset M; Mantovani D
    Acta Biomater; 2010 May; 6(5):1726-35. PubMed ID: 20085829
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Composite material stent comprising metallic wire and polylactic acid fibers, and its mechanical strength and retrievability.
    Shomura Y; Tanigawa N; Tokuda T; Kariya S; Kojima H; Komemushi A; Sawada S
    Acta Radiol; 2009 May; 50(4):355-9. PubMed ID: 19306137
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design of a pseudo-physiological test bench specific to the development of biodegradable metallic biomaterials.
    Lévesque J; Hermawan H; Dubé D; Mantovani D
    Acta Biomater; 2008 Mar; 4(2):284-95. PubMed ID: 18033745
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A surface-eroding poly(1,3-trimethylene carbonate) coating for fully biodegradable magnesium-based stent applications: toward better biofunction, biodegradation and biocompatibility.
    Wang J; He Y; Maitz MF; Collins B; Xiong K; Guo L; Yun Y; Wan G; Huang N
    Acta Biomater; 2013 Nov; 9(10):8678-89. PubMed ID: 23467041
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coating bioabsorption and chronic bare metal scaffolding versus fully bioabsorbable stent.
    Waksman R; Pakala R
    EuroIntervention; 2009 Dec; 5 Suppl F():F36-42. PubMed ID: 22100674
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro and in vivo characterization of novel biodegradable polymers for application as drug-eluting stent coatings.
    Lockwood NA; Hergenrother RW; Patrick LM; Stucke SM; Steendam R; Pacheco E; Virmani R; Kolodgie FD; Hubbard B
    J Biomater Sci Polym Ed; 2010; 21(4):529-52. PubMed ID: 20233507
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The SYNERGY biodegradable polymer everolimus eluting coronary stent: Porcine vascular compatibility and polymer safety study.
    Wilson GJ; Marks A; Berg KJ; Eppihimer M; Sushkova N; Hawley SP; Robertson KA; Knapp D; Pennington DE; Chen YL; Foss A; Huibregtse B; Dawkins KD
    Catheter Cardiovasc Interv; 2015 Nov; 86(6):E247-57. PubMed ID: 26009986
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Long-term in vivo study of biodegradable Zn-Cu stent: A 2-year implantation evaluation in porcine coronary artery.
    Zhou C; Li HF; Yin YX; Shi ZZ; Li T; Feng XY; Zhang JW; Song CX; Cui XS; Xu KL; Zhao YW; Hou WB; Lu ST; Liu G; Li MQ; Ma JY; Toft E; Volinsky AA; Wan M; Yao XJ; Wang CB; Yao K; Xu SK; Lu H; Chang SF; Ge JB; Wang LN; Zhang HJ
    Acta Biomater; 2019 Oct; 97():657-670. PubMed ID: 31401346
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.