These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 29243907)

  • 21. In vivo comparison of a polymer-free Biolimus A9-eluting stent with a biodegradable polymer-based Biolimus A9 eluting stent and a bare metal stent in balloon denuded and radiated hypercholesterolemic rabbit iliac arteries.
    Waksman R; Pakala R; Baffour R; Seabron R; Hellinga D; Chan R; Su SH; Kolodgie F; Virmani R
    Catheter Cardiovasc Interv; 2012 Sep; 80(3):429-36. PubMed ID: 22105925
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fe-Mn alloys for metallic biodegradable stents: degradation and cell viability studies.
    Hermawan H; Purnama A; Dube D; Couet J; Mantovani D
    Acta Biomater; 2010 May; 6(5):1852-60. PubMed ID: 19941977
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Encrustation and strength retention properties of the self-expandable, biodegradable, self-reinforced L-lactide-glycolic acid co-polymer 80:20 spiral urethral stent in vitro.
    Laaksovirta S; Välimaa T; Isotalo T; Törmälä P; Talja M; Tammela TL
    J Urol; 2003 Aug; 170(2 Pt 1):468-71. PubMed ID: 12853801
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biodegradable-Polymer Biolimus-Eluting Stents versus Durable-Polymer Everolimus-Eluting Stents at One-Year Follow-Up: A Registry-Based Cohort Study.
    Parsa E; Saroukhani S; Majlessi F; Poorhosseini H; Lofti-Tokaldany M; Jalali A; Salarifar M; Nematipour E; Alidoosti M; Aghajani H; Amirzadegan A; Kassaian SE
    Tex Heart Inst J; 2016 Apr; 43(2):126-30. PubMed ID: 27127426
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Incidence of late-acquired stent malapposition of drug eluting stents with second generation permanent and biodegradable polymer coatings-A prospective, randomized comparison using optical coherence tomography.
    Roth C; Gangl C; Dalos D; Delle-Karth G; Neunteufl T; Berger R
    J Interv Cardiol; 2018 Dec; 31(6):780-791. PubMed ID: 30479028
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nanophasic biodegradation enhances the durability and biocompatibility of magnesium alloys for the next-generation vascular stents.
    Mao L; Shen L; Niu J; Zhang J; Ding W; Wu Y; Fan R; Yuan G
    Nanoscale; 2013 Oct; 5(20):9517-22. PubMed ID: 23989064
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Long-term biocompatibility of a corrodible peripheral iron stent in the porcine descending aorta.
    Peuster M; Hesse C; Schloo T; Fink C; Beerbaum P; von Schnakenburg C
    Biomaterials; 2006 Oct; 27(28):4955-62. PubMed ID: 16765434
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of biolimus-eluting stents with biodegradable polymer vs bare-metal stents on cardiovascular events among patients with acute myocardial infarction: the COMFORTABLE AMI randomized trial.
    Räber L; Kelbæk H; Ostojic M; Baumbach A; Heg D; Tüller D; von Birgelen C; Roffi M; Moschovitis A; Khattab AA; Wenaweser P; Bonvini R; Pedrazzini G; Kornowski R; Weber K; Trelle S; Lüscher TF; Taniwaki M; Matter CM; Meier B; Jüni P; Windecker S;
    JAMA; 2012 Aug; 308(8):777-87. PubMed ID: 22910755
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Novel Zn-based alloys for biodegradable stent applications: Design, development and in vitro degradation.
    Mostaed E; Sikora-Jasinska M; Mostaed A; Loffredo S; Demir AG; Previtali B; Mantovani D; Beanland R; Vedani M
    J Mech Behav Biomed Mater; 2016 Jul; 60():581-602. PubMed ID: 27062241
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development of a Novel Biodegradable Metallic Stent Based on Microgalvanic Effect.
    Frattolin J; Barua R; Aydin H; Rajagopalan S; Gottellini L; Leask R; Yue S; Frost D; Bertrand OF; Mongrain R
    Ann Biomed Eng; 2016 Feb; 44(2):404-18. PubMed ID: 26384666
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Long-term assessment of a novel biodegradable paclitaxel-eluting coronary polylactide stent.
    Vogt F; Stein A; Rettemeier G; Krott N; Hoffmann R; vom Dahl J; Bosserhoff AK; Michaeli W; Hanrath P; Weber C; Blindt R
    Eur Heart J; 2004 Aug; 25(15):1330-40. PubMed ID: 15288161
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biodegradable, elastomeric coatings with controlled anti-proliferative agent release for magnesium-based cardiovascular stents.
    Gu X; Mao Z; Ye SH; Koo Y; Yun Y; Tiasha TR; Shanov V; Wagner WR
    Colloids Surf B Biointerfaces; 2016 Aug; 144():170-179. PubMed ID: 27085049
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In vitro study on newly designed biodegradable Fe-X composites (X = W, CNT) prepared by spark plasma sintering.
    Cheng J; Zheng YF
    J Biomed Mater Res B Appl Biomater; 2013 May; 101(4):485-97. PubMed ID: 23359385
    [TBL] [Abstract][Full Text] [Related]  

  • 34. First-in-human evaluation of a bioabsorbable polymer-coated sirolimus-eluting stent: imaging and clinical results of the DESSOLVE I Trial (DES with sirolimus and a bioabsorbable polymer for the treatment of patients with de novo lesion in the native coronary arteries).
    Ormiston J; Webster M; Stewart J; Vrolix M; Whitbourn R; Donohoe D; Knape C; Lansky A; Attizzani GF; Fitzgerald P; Kandzari DE; Wijns W
    JACC Cardiovasc Interv; 2013 Oct; 6(10):1026-34. PubMed ID: 24055443
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Influence of cross-rolling on the micro-texture and biodegradation of pure iron as biodegradable material for medical implants.
    Obayi CS; Tolouei R; Paternoster C; Turgeon S; Okorie BA; Obikwelu DO; Cassar G; Buhagiar J; Mantovani D
    Acta Biomater; 2015 Apr; 17():68-77. PubMed ID: 25644452
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterization and in vivo evaluation of a bio-corrodible nitrided iron stent.
    Feng Q; Zhang D; Xin C; Liu X; Lin W; Zhang W; Chen S; Sun K
    J Mater Sci Mater Med; 2013 Mar; 24(3):713-24. PubMed ID: 23183963
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Development of a micro-scale method to assess the effect of corrosion on the mechanical properties of a biodegradable Fe-316L stent material.
    Frattolin J; Cattarinuzzi E; Rajagopalan S; Gastaldi D; Vena P; Yue S; Bertrand OF; Mongrain R
    J Mech Behav Biomed Mater; 2021 Feb; 114():104173. PubMed ID: 33160911
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Randomised comparison of vascular response to biodegradable polymer sirolimus eluting and permanent polymer everolimus eluting stents: An optical coherence tomography study.
    Koppara T; Tada T; Xhepa E; Kufner S; Byrne RA; Ibrahim T; Laugwitz KL; Kastrati A; Joner M
    Int J Cardiol; 2018 May; 258():42-49. PubMed ID: 29544956
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Short-term safety and efficacy of the biodegradable iron stent in mini-swine coronary arteries.
    Wu C; Qiu H; Hu XY; Ruan YM; Tian Y; Chu Y; Xu XL; Xu L; Tang Y; Gao RL
    Chin Med J (Engl); 2013; 126(24):4752-7. PubMed ID: 24342324
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biodegradable Metals for Cardiovascular Stents: from Clinical Concerns to Recent Zn-Alloys.
    Bowen PK; Shearier ER; Zhao S; Guillory RJ; Zhao F; Goldman J; Drelich JW
    Adv Healthc Mater; 2016 May; 5(10):1121-40. PubMed ID: 27094868
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.