BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 29243988)

  • 1. Prostate Cancer Probability Prediction By Machine Learning Technique.
    Jović S; Miljković M; Ivanović M; Šaranović M; Arsić M
    Cancer Invest; 2017 Nov; 35(10):647-651. PubMed ID: 29243988
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine learning for survival analysis: a case study on recurrence of prostate cancer.
    Zupan B; Demsar J; Kattan MW; Beck JR; Bratko I
    Artif Intell Med; 2000 Aug; 20(1):59-75. PubMed ID: 11185421
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Statistical-learning strategies generate only modestly performing predictive models for urinary symptoms following external beam radiotherapy of the prostate: A comparison of conventional and machine-learning methods.
    Yahya N; Ebert MA; Bulsara M; House MJ; Kennedy A; Joseph DJ; Denham JW
    Med Phys; 2016 May; 43(5):2040. PubMed ID: 27147316
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimation of the Most Influential Factors for Survival Probability Prediction of Prostate Cancer Patients.
    Stanković J; Stanković M
    Cancer Invest; 2017 Oct; 35(9):594-600. PubMed ID: 29064739
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Machine learning models in breast cancer survival prediction.
    Montazeri M; Montazeri M; Montazeri M; Beigzadeh A
    Technol Health Care; 2016; 24(1):31-42. PubMed ID: 26409558
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of Cox regression with other methods for determining prediction models and nomograms.
    Kattan MW
    J Urol; 2003 Dec; 170(6 Pt 2):S6-9; discussion S10. PubMed ID: 14610404
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Model-agnostic explanations for survival prediction models.
    Suresh K; Görg C; Ghosh D
    Stat Med; 2024 May; 43(11):2161-2182. PubMed ID: 38530157
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Machine Learning Approaches for Early Prostate Cancer Prediction Based on Healthcare Utilization Patterns.
    Finkelstein J; Cui W; Martin TC; Parsons R
    Stud Health Technol Inform; 2022 Jan; 289():65-68. PubMed ID: 35062093
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Machine learning for improved pathological staging of prostate cancer: a performance comparison on a range of classifiers.
    Regnier-Coudert O; McCall J; Lothian R; Lam T; McClinton S; N'dow J
    Artif Intell Med; 2012 May; 55(1):25-35. PubMed ID: 22206941
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PRODIGE: PRediction models in prOstate cancer for personalized meDIcine challenGE.
    Alitto AR; Gatta R; Vanneste B; Vallati M; Meldolesi E; Damiani A; Lanzotti V; Mattiucci GC; Frascino V; Masciocchi C; Catucci F; Dekker A; Lambin P; Valentini V; Mantini G
    Future Oncol; 2017 Oct; 13(24):2171-2181. PubMed ID: 28758431
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Performance Comparison on the Machine Learning Classifiers in Predictive Pathology Staging of Prostate Cancer.
    Kim JK; Yook IH; Choi MJ; Lee JS; Park YH; Lee JY; Choi IY
    Stud Health Technol Inform; 2017; 245():1273. PubMed ID: 29295358
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multicenter Comparison of Machine Learning Methods and Conventional Regression for Predicting Clinical Deterioration on the Wards.
    Churpek MM; Yuen TC; Winslow C; Meltzer DO; Kattan MW; Edelson DP
    Crit Care Med; 2016 Feb; 44(2):368-74. PubMed ID: 26771782
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PREDICT: model for prediction of survival in localized prostate cancer.
    Kerkmeijer LG; Monninkhof EM; van Oort IM; van der Poel HG; de Meerleer G; van Vulpen M
    World J Urol; 2016 Jun; 34(6):789-95. PubMed ID: 26420595
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comprehensive tool for creating and evaluating privacy-preserving biomedical prediction models.
    Eicher J; Bild R; Spengler H; Kuhn KA; Prasser F
    BMC Med Inform Decis Mak; 2020 Feb; 20(1):29. PubMed ID: 32046701
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Addressing issues associated with evaluating prediction models for survival endpoints based on the concordance statistic.
    Wang M; Long Q
    Biometrics; 2016 Sep; 72(3):897-906. PubMed ID: 26756274
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-dimensional variable selection and prediction under competing risks with application to SEER-Medicare linked data.
    Hou J; Paravati A; Hou J; Xu R; Murphy J
    Stat Med; 2018 Oct; 37(24):3486-3502. PubMed ID: 29845637
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of mortality after radical cystectomy for bladder cancer by machine learning techniques.
    Wang G; Lam KM; Deng Z; Choi KS
    Comput Biol Med; 2015 Aug; 63():124-32. PubMed ID: 26073099
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of Allogeneic Hematopoietic Stem-Cell Transplantation Mortality 100 Days After Transplantation Using a Machine Learning Algorithm: A European Group for Blood and Marrow Transplantation Acute Leukemia Working Party Retrospective Data Mining Study.
    Shouval R; Labopin M; Bondi O; Mishan-Shamay H; Shimoni A; Ciceri F; Esteve J; Giebel S; Gorin NC; Schmid C; Polge E; Aljurf M; Kroger N; Craddock C; Bacigalupo A; Cornelissen JJ; Baron F; Unger R; Nagler A; Mohty M
    J Clin Oncol; 2015 Oct; 33(28):3144-51. PubMed ID: 26240227
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stage-Specific Survivability Prediction Models across Different Cancer Types.
    Hossein Pour ES; Kate RJ
    AMIA Annu Symp Proc; 2017; 2017():1421-1429. PubMed ID: 29854211
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of tumor location in prostate cancer tissue using a machine learning system on gene expression data.
    Hamzeh O; Alkhateeb A; Zheng J; Kandalam S; Rueda L
    BMC Bioinformatics; 2020 Mar; 21(Suppl 2):78. PubMed ID: 32164523
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.